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Pr ol ogue

We quote from our Pr ef ac e to the volume: Asymptotic Methods in Stochastics: Festschrift
for Miklós Csörgő (L. Horváth, B. Szyszkowicz, Eds.), Fields Institute Communications, Volume
44, AMS 2004.

The papers in this volume reflect the wide ranging interest of Miklós in Probability
and Statistics, and nearly all of them are connected to his research. The editors
also have a 69 page résumé of his work over the past forty or so years, titled Pat h

Pr oper t ies of F or t y Year s of Resear c h in Pr obabil it y and St at ist ic s:

In C onver sat ion w it h M ik l ós C sör gő. This article, together with Miklós’s list
of publications is available as No. 400–2004 of the Technical Report Series of LRSP. It
can also be accessed on the LRSP website: www.lrsp.carleton.ca, as well as on the
Fields Institute website: www.fields.utoronto.ca/publications/supplements/.
Unfortunately, due to space limitations, we could not include this résumé with its
311 references and Miklós’s list of publications in this collection.

For the sake of better connecting to the above volume, we are reprinting the full text of our
PREFACE to it in this No. 400 - 2004 of the Technical Report Series of LRSP.

Our long résumé of Miklós Csörgő’s work over the past forty or so years is meant to read
as if it were an expository survey paper. On occasions there are also references made to papers
in the Festschrift volume. It is hoped that when viewed together with the volume, our résumé
will also contribute to, and thus enhance, the cohesion of the whole volume as an expository
research monograph. References in our résumé that are made to papers in Publ ic at ions of

M ik l ós C sör gő, as summarized in this report, are designated by bold-face numbers in square
brackets.

Lajos Hor vát h
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Pr ef ac e

ICAMS’02, an International Conference on Asymptotic Methods in Stochastics was organized
and held in honour of the work of Miklós Csörgő on the occasion of his 70th birthday at Carleton
University, Ottawa, Canada, 23–25 May 2002. The conference was hosted and sponsored by the
Laboratory for Research in Statistics and Probability (LRSP), Carleton University–University
of Ottawa, the School of Mathematics and Statistics, Carleton University, and co-sponsored by
The Fields Institute for Research in Mathematical Sciences. This international meeting was a
smaller version of an earlier conference, ICAMPS’97 (International Conference on Asymptotic
Methods in Probability and Statistics), that was held at Carleton University in July 1997. For
the proceedings volume of the latter conference we refer to [1].

We are pleased to publish the proceedings of ICAMS’02 in F iel ds Inst it ut e C om m uni-

c at ions by AMS, and it is our pleasure to dedicate this collection of research papers to Miklós
Csörgő as a token of respect and appreciation of his work in Probability and Statistics by all
the contributors to this volume, and all the participants of ICAMS’02. We are grateful to the
contributors for submitting their papers for publication in this volume, as well as to the referees
for their valuable time and enhancing work on it. All papers have been refereed, and accordingly
revised if so requested by the editors. We wish to record here our sincere thanks to everyone for
their further time, care and collaboration throughout this elaborate process.

The papers in this volume reflect the wide ranging interest of Miklós in Probability and Statis-
tics, and nearly all of them are connected to his research. The editors also have a 69 page résumé
of his work over the past forty or so years, titled Pat h Pr oper t ies of F or t y Year s of Re-

sear c h in Pr obabil it y and St at ist ic s: In C onver sat ion w it h M ik l ós C sör gő. This
article, together with Miklós’s list of publications is available as No. 400–2004 of the Technical
Report Series of LRSP. It can also be accessed on the LRSP website: www.lrsp.carleton.ca, as
well as on the Fields Institute website: www.fields.utoronto.ca/publications/supplements/.
Unfortunately, due to space limitations, we could not include this résumé with its 311 references
and Miklós’s list of publications in this collection.

More than half of the 28 papers in this volume are up-to-date surveys on various active
research areas in Probability and Statistics. All the sections except for Part 2 are headed by
survey papers that are also indicative of the main themes of these sections. All other papers,
including Part 2 in which there are three survey papers on different themes, are alphabetically
ordered.

In Part 1 Csáki, Földes and Shi provide a survey of their joint work with Miklós on
path properties of stochastic processes, a most insightful review of their collaboration on strong
approximations of local time and additive functionals, path properties of Cauchy principal values
of Brownian local time, iterated processes, level crossings of the empirical process, Vervaat and
Vervaat-error processes and Banach space valued stochastic processes. Khoshnevisan presents
a self-contained theory of quasi-sure results via Brownian sheet connections. In the first of their
two papers in this volume Peccati and Yor provide a unified framework by means of Hardy’s
inequality in L2[0, 1] for two results concerning the existence of certain integrals associated with
a one dimensional Brownian motion starting from zero and the principal values of Brownian
local times. In the second of their two papers Peccati and Yor generalize and give new proofs
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of four limit theorems on quadratic functionals of Brownian motion and Brownian bridge that
were recently obtained by Deheuvels and Martynov, and establish explicit connections with
occupation times of Bessel processes, Poincaré’s Lemma and the class of quadratic functionals
of Brownian local times studied in their preceding paper. Estimating the local time of a Wiener
process from its values at integers, Révész provides a new look at one of his results of twenty
years ago with Miklós.

The papers in Part 2 survey several new directions in probability theory and its applications.
Bhansali, Holland and Kokoszka study properties of chaotic maps that provide non-linear,
non-Gaussian models as alternatives to earlier established linear and Gaussian stochastic models
for the class of discrete-time long-memory stationary processes. Davydov and Paulauskas
survey recent results on, and give a short introduction to, p–stable convex compact sets in
Banach spaces, with special attention to stable random zonotopes. Davydov and Zitikis
survey results on convex rearrangements, called by them convexifications, of stochastic processes.
They also provide a view of relationships of convexifications with the operators of monotone
and convex rearrangements in functional analysis and with the generalized Lorenz curves of
econometrics. Dawson, Gorostiza and Wakolbinger survey recent work on hierarchical
random walks with emphasis on transience-recurrence phenomena and in particular on the notion
of degree of transience. They also describe a family of hierarchical random fields. Applications
of hierarchical random walks and fields in statistical physics and branching processes are also
discussed. Studying the expected distance from the origin after n steps of the so-called isotropic
Pearson random walk in the plane, Ross and Shao improve the upper bound on Helgason’s
number.

The classical Erdős–Hsu–Robbins notion of complete convergence has led to various exten-
sions of this original idea. One of these extensions is Heyde’s notion of what is now called
precise asymptotics. Following their extensive survey of precise asymptotics for sums, in Part
3 Gut and Steinebach extend these results to renewal counting processes and first passage
time processes of random walks. As an analog of Heyde’s theorem for ordinary means, Sándor
Csörgő obtains the precise asymptotic behaviour of bootstrap means.

In Part 4, Ćwiklińska and Rychlik present necessary and sufficient conditions for the
weak convergence of random sums and maximum random sums of independent random variables.
Tomkins concludes necessary and sufficient conditions for the almost sure and complete stability
of weighted maxima of bounded i.i.d. random variables.

Part 5 is devoted to change-point analysis. Hušková contributes a survey of procedures
based on permutation tests or resampling methods for obtaining approximations to the critical
values of various test procedures for detecting changes in statistical models. Aly proposes and
studies L–statistics based test procedures for detecting a change in the distribution of a random
sample. Atenafu and Gombay define truncated sequential tests via the generalized likelihood
ratio to detect change in observations described by the nested random effects model. Orasch
studies the asymptotic behaviour of U–statistics based processes whose appropriate functionals
can be used to detect multiple changes in the distribution of a sample of possibly vector valued
observations.

In Part 6, based on quantiles, comparison distributions, and conditional quantiles, Parzen
develops a unified non-parametric framework which he calls “Statistical methods learning: for
understanding and applying statistical methods.” Using a strong martingale approach to weak
convergence, Burke considers cumulative sum processes that can be used to test the fit of models
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in multivariate regression and the proportional hazards model of survival analysis. Given certain
marginals, Dabrowski and Dehling study the conditional distribution of a multinomial sample
and obtain a local multivariate normal limit theorem. As a consequence they prove asymptotic
normality of the so-called H–coefficient in certain nonparametric unfolding models with dichoto-
mous data. Ghoudi and Rémillard, continuing their work that was published in the above
mentioned volume [1], provide a unified treatment of inference procedures that are based on
pseudo-observations in the multivariate setting, and give several examples of applications as
well.

Part 7, devoted to applications to economics, opens with a review of recent advances in the
probabilistic and statistical theory of GARCH and related processes by Berkes, Horváth and
Kokoszka. GARCH type models are extensively used in modeling returns on speculative assets.
Kulperger’s paper deals with aspects of contingent claim pricing in the incomplete discrete
time model for returns via seeking a method to choose amongst members of the family of risk
neutral measures that is close in some sense to the historical model measure. McLeish builds
on using high and low price records of financial time series for estimating volatility parameters
and correlation, and finds a multivariate normal approximation to the joint distributions of
high, low and close price records to be a useful tool for pricing certain path-dependent options.
Yu in his paper surveys recent developments on asymptotic results for residual processes of
(G)ARCH time series models, and shows that, though most common processes such as partial
sums and empirical processes have Gaussian limits that depend on the unknown parameters
of these models, some of these processes when properly normalized will have a Gaussian limit
that is free of model parameters. Hence one can, for example, test for model fitness or model
misspecification in such situations.

In Part 8, Csörgő, Szyszkowicz andWang survey weighted approximations in probability
and strong limit theorems for self-normalized partial sums processes. In the last paragraph of
our above mentioned résumé in conversation with Miklós Csörgő (cf. [2]), we mention a number
of further important references on invariance principles in this regard. In the second paper of
Part 8, Wang sharpens an earlier result on a Darling-Erdős type theorem for self-normalized
sums.

We now wish to take this opportunity to sincerely thank the Natural Sciences and Engineering
Research Council (NSERC) of Canada for their financial support of our LRSP by their Major
Facility Access (MFA) awards in these years. Without these MFA awards, it would have been
impossible for our LRSP to exist, and for us to even think about organizing our ICAMS’02. We
are also grateful to the Fields Institute for Research in Mathematical Sciences for their financial
support of our conference. We hope very much that this volume and the international success
of ICAMS’02 will have contributed to the justification of their trust in us.

Last, but not least, we most sincerely wish to thank Gillian Murray, the Coordinator of
our manifold LRSP activities, for her help throughout, for taking care of all the logistics of
ICAMS’02, and for her invaluable technical skill and role in preparing this volume for publication.

In conclusion, we also want to express our appreciation to the Editorial Board of the Fields
Institute for their approval of the publication of these proceedings in their Communications
Series, to Carl R. Riehm, the Managing Editor of Publications, and Tom Salisbury, the Deputy
Director, for their kind attention to, and sincere interest in, the publication of this volume, and to
their Publications Manager, Debbie Iscoe, for her cooperation and expert help in its preparation
for the AMS publishers. We hope very much that the readers will find this collection of papers
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informative and also helpful in their studies and work.
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Research books, monographs:
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[A3] M. Csörgő, S. Csörgő and L. Horváth, An Asymptotic Theory for Empirical Reliability
and Concentration Processes. Lecture Notes in Statistics, 33, Springer-Verlag, Berlin,
Heidelberg 1986 (171 pages).
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[76] A nearest neighbour estimator for the score function. Probability Theory and Related
Fields 71 (1986), 293–305 (with P. Révész).
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[80] Approximations of weighted empirical and quantile processes. Statistics & Probability
Letters 4 (1986), 275–280 (with L. Horváth).
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[87] Estimation of total time on test transforms and Lorenz curves under random censorship.
Statistics 18 (1987), 77–97 (with S. Csörgő, L. Horváth).
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ed.) Pécs (Hungary), 1989, 107–135, North–Holland, Amsterdam (with Z.Y. Lin).

xiv



1990

[115] On moduli of continuity for Gaussian and l2–norm squared processes generated by Ornstein–
Uhlenbeck processes. Canadian Journal of Mathematics 42 (1990), 141–158 (with Z.Y.
Lin).

[116] Confidence bands for quantile function under random censorship. Annals of the Institute
of Statistical Mathematics 42 (1990), 21–36 (with C.-J.F. Chung, L. Horváth).
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[143] A self-normalized Erdős-Rényi type strong law of large numbers, Stochastic Processes and
their Applications 50 (1994), 187–196 (with Q.-M. Shao).

xvi



[144] On almost sure limit inferior for B-valued stochastic processes and applications, Probability
Theory and Related Fields 99 (1994), 29–54 (with Q.-M. Shao).

[145] Path properties for l∞-valued Gaussian processes, Proc. Amer. Math. Soc. 121 (1994),
225–236 (with Z.-Y. Lin, Q.-M. Shao).

[146] Empirical and partial sum processes with sample paths in Banach function spaces, In
Probability Theory and Mathematical Statistics, 143–158, B. Grigelionis et al. (Eds),
1994 VSP/TEV (with R. Norvaǐsa).
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1996

[155] A note on the change-point problem for angular data, Statistics & Probability Letters 27
(1996), 61–65 (with L. Horváth).
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2001

[181] A functional modulus of continuity for a Wiener process, Statistics & Probability Letters
51 (2001), 215–223 (with B. Chen).

[182] Path properties of Cauchy’s principal values related to local time, Studia Scientarium
Mathematicarum Hungarica 38 (2001), 149–169 (with E. Csáki, A. Földes, Z. Shi).
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Pat h Pr oper t ies of F or t y Year s of Resear c h in Pr obabil it y

and St at ist ic s: In C onver sat ion w it h M ik l ós C sör gő

1 T he Sixties and the Fir st H alf of the Seventies With

Occasional Glimpses I nto Some of the Year s After

After two years of qualifying studies in Mathematics at McGill, and many odd jobs in between in
Montreal, in 1959 Miklós Csörgő (B.A., Economics, Budapest, 1955) was accepted as a graduate
student in the Department of Mathematics of McGill University. At the same time, in support
of his studies, he was offered a part-time job as programmer in McGill’s first, then brand new
(IBM 650), Computing Centre, which he was glad to accept. Miklós Csörgő arrived in Canada
on January 16, 1957, where he became a landed immigrant together with many thousands of
other refugees, who left Hungary after the defeat of the October 23, 1956 Hungarian revolution.

Empty cell tests. The just mentioned part-time job at the McGill Computing Centre had
also led to the first publication, [1] with Irwin Guttman in 1962, in which, inspired by an early
version of the S.S. Wilks paper [301], tables of the (approximate) 1% and 5% critical values are
provided for the one and two sample empty cell tests with a new derivation of their probability
function under the null hypothesis that the two samples have come from the same population.
The tables themselves were tabulated on the above mentioned McGill IBM 650, using a Fortran
program. Paper [1] led to [2] with Irwin Guttman in 1964, concerning the consistency of the
two-sample empty cell test.

M.A. (1961), Ph.D. (1963), Postdoctoral (1963-65) A National Research Council of
Canada Studentship Award in 1960 enabled Miklós Csörgő to continue his graduate studies at
McGill for three more years, where he obtained his M.A. (McGill, 1961) and Ph.D. (McGill,
1963), both in Mathematics, under the inspiring, helpful and most encouraging supervision of
W.A. O’N. Waugh. His M.A. thesis was titled “Axioms for Conditional Probability Spaces”,
an essay on Alfréd Rényi’s fundamental work [225] of 1955 on the foundations of conditional
probability spaces, and related measure theoretic matters. His Ph.D. thesis was titled “Some
Kolmogorov–Smirnov–Rényi Type Theorems of Probability”. It was motivated by Rényi’s land-
mark paper [224] of 1953 on the theory of order statistics, where he also studied weighted
versions of the classical Kolmogorov–Smirnov statistics. For illustration of this idea, let F be
the continuous distribution function of a random variable X, and Fn the empirical distribution
function of a random sample X1, . . . ,Xn, taken on X. Rényi [224] introduced and studied the
asymptotic behaviour of functionals like

sup
a≤F (x)≤1

(Fn(x)− F (x))/F (x) and sup
0≤F (x)≤b

(Fn(x) − F (x))/(1− F (x)),

as well as that of their two-sided versions. His idea of introducing these modifications of the
classical Kolmogorov–Smirnov statistics was to make them more sensitive to detecting deviations
on the tails from a hypothesized distribution F .

Two most inspiring postdoctoral years followed, 1963–65, in the Department of Mathematics
of Princeton University as Instructor, and Postdoctoral Fellow on research funds of William
Feller and John W. Tukey. Doing further work along the lines of his just mentioned 1963 Ph.D.
thesis resulted in the publications [3]–[10] during 1965–67. Some of these works were discussed in
Rényi’s paper [229] in 1969, and commented on as well in Endre Csáki’s Candidatus of Sciences
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dissertation [60] in 1974 (cf. also [63]). The latter provide a unified treatment for one-sided
Kolmogorov–Smirnov–Rényi type problems concerning empirical distributions via combinatorial
methods, variations on the so-called ballot lemma à la Lajos Takács [282] and H.E. Daniels [84].

Random sums, Rényi-mixing, Poissonization. Paper [11] is a first excursion into sums
and random sums of absolutely fair random variables and their Rényi-mixing (cf. [226] and
[230]). This in turn led to collaboration with Roger Fischler and Sándor Csörgő on related
topics, as in [13], [20] and [23] and [14], [24] respectively. For further results along these
lines we refer to [15] with Mayer Alvo, and to [21], [26]. One of the earliest papers dealing
with random limit theorems was published by Mark Kac [159] in 1949. He introduced Poisson
random-size samples for the sake of studying the problem of the asymptotic distribution of
the uniform empirical process. With proving rigorously that the sup-functional of the absolute
value of his Poisson random-indexed uniform empirical process converges in distribution to that
of a Wiener process, Kac [159] came pretty close to proving also that the sup-functional of
the absolute value of the uniform empirical process must converge in distribution to that of a
Brownian bridge, the very question J.L. Doob was posing in his famous “Heuristic approach...”
paper [104] in the same year. Kac’s idea of Poissonization turned out to be very useful also
later on, when the need for establishing strong invariance principles for multivariate empirical
processes became apparent after Kiefer’s landmark paper [175] in 1972 (cf. e.g., M.J. Wichura
[300], [28] and [32] with Pál Révész, Révész [235], [101] with Lajos Horváth). The above
mentioned seminal work of Kac and the many further papers which also make use of the idea
of Poissonization and, indeed, the very Skorohod [267] embedding scheme itself, show that the
notion of randomly stopped processes has played a significant role in the development of our
view of the invariance principle that was first conceived and used by Pál Erdős and Mark Kac
in their celebrated ground breaking paper [116]. On the other hand, the exposition [31], in
Hungarian, with S. Csörgő, R. Fischler and P. Révész shows how some fundamental advances
in the theory of strong invariance principles in the mid-seventies can, in turn, be applied to
studying similar strong and weak convergence properties of randomly selected sequences, such as
empirical and quantile processes when the sample size is random, or partial sums of a random
number of random variables. For a review of this paper we refer to MR58 #13249 by Endre
Csáki. We note as well that Chapter 7 of the by now classic book [A1] with Pál Révész is based
on the paper [31] that also lists a bibliography of 69 related papers. For further references along
these lines we refer to J.-E. Karlsson and D. Szász [162].

Replacing composite goodness-of-fit hypotheses by equivalent simple ones. Typ-
ical goodness-of-fit problems are concerned with testing for a random sample possibly coming
from a specific probability distribution of statistical interest. If the distribution in hand is
not completely specified by the so-called null assumption about it, then we have a compos-
ite goodness-of-fit hypothesis to deal with. Starting with paper [12] with V. Seshadri and
M.A. Stephens, and continuing with [16], [18], [19], [22], [25], [30], these papers deal with the
problem of replacing composite goodness-of-fit hypotheses by equivalent simple ones.

Strongly multiplicative systems. A sequence ξ1, ξ2, . . . of random variables is called an
equinormed strongly multiplicative system (ESMS) (cf. G. Alexits [7]) if

Eξi = 0, Eξ2i = 1, i = 1, 2, . . . , (1.1)

and
E
(

ξr1i1 ξ
r2
i2
· · · ξrki2

)

= E
(

ξr1i1
)

E
(

ξr2i2
)

. . . E
(

ξrkik

)

, k = 1, 2, . . . , (1.2)
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where r1, r2, . . . , rk can be equal to 1 or 2. If (1.2) holds for k = 2, . . . , K, then this system of
random variables is called a K–wise ESMS.

G. Alexits [7], G. Alexits and K. Tandori [8] showed (cf. Theorem 3.3.1 in Révész [234]) that
a uniformly bounded ESMS satisfies

∞
∑

k=1

ckξk <∞ with probability 1 (1.3)

with a sequence of real numbers c1, c2, . . . for which

∞
∑

k=1

c2k <∞. (1.4)

We note in passing that the condition (1.4) implies (1.3) for a mean zero sequence of indepen-
dent random variables, and that the latter turned out to be also true for orthogonal sequences
as well in the special case of Fourier series (cf. L. Carleson [42]). Orthonormal systems of mean
zero random variables ξ1, ξ2, . . . in general require the stronger condition

∞
∑

k=1

c2k log2b ase2 k <∞ (1.5)

for having (1.3) (cf. Theorem 3.2.1 in Révész [234]). Tandori [284] showed that, if c1, c2, . . . is a
monotonically decreasing sequence of real numbers for which the series (1.4) diverges, then there
exists an orthonormal system ξ1, ξ2, . . . such that the series

∑∞
k=1 ckξk is nowhere convergent (cf.

Theorem 3.2.4 in Révész [234]). Thus, in general, for an orthonormal system of random variables
to behave as in (1.3), the sufficient condition of (1.4) is, essentially, also necessary. In view of
this result did Alexits [7] and Alexits and Tandori [8] propose the study of various multiplicative
systems, aiming at finding conditions that would imply the almost everywhere convergence
of the series

∑∞
k=1 ckξk, where ξ1, ξ2, . . . is an orthonormal system of random variables and

∑∞
k=1 c

2
k < ∞. Moreover, they showed that such results were feasible for what they called an

ESMS as above (cf. (1.1) and (1.2)), provided the latter is assumed to be uniformly bounded (cf.
(1.3) via (1.4)). Révész proved an analogue of this result for 4-wise uniformly bounded ESMS
(cf. Theorem 3.3.4 of [234]), and in [233] he proved the first LIL (cf. Theorem 3.3.3 of [234]) and
CLT for a uniformly bounded ESMS of random variables.

Inspired by Révész’s first LIL in [233] for an ESMS of uniformly bounded random variables
and by the rest of his papers along these lines later on (for a review of various multiplicative
systems of random variables and further references, we refer to [186]), in [17] Csörgő studied the
LIL problem for normed strongly multiplicative systems (NSMS) of random variables ξ1, ξ2, . . .
that satisfy (1.1) with Eξ2i = δ2i , i = 1, 2, . . . , as well as the product rule of (1.2). For such an
NSMS of random variables that are not assumed to be uniformly bounded, a LIL was proved in
[17] that, in the light of conditional medians as in R.J. Tomkins [287], was extended in [35] with
Don McLeish to read as follows: Let {ξi}i≥1 be an NSMS as just defined, put Sk = ξ1 + · · ·+ ξk,
δ̂2n = δ21 + · · · + δ2n and assume that, as n→ ∞,

δ̂2n → ∞, |ξn|/δ̂n = o((log log δ̂2n)
−1/2),

and that we have
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∑n
k /δ̂

2
n → 1 a.s., for every k ≥ 1,

where
∑n

k := E
(

(Sk − Sn)2|S1, . . . , Sk
)

. Then, for every k ≥ 1,

lim sup
n→∞

|Sn|/(2Σnk log log Σnk)
1/2 ≤ 1 a.s. (1.6)

The constant 1 in (1.6) is likely best possible. If the latter were to be true, even under
some additional conditions, the just quoted result could be viewed as an NSMS version of the
W.F. Stout [271] martingale analogue of Kolmogorov’s LIL.

Randomly indexed sequences revisited in the milieu of the subsequence prin-
ciple. Another way of aiming at results like having (1.3) via (1.4) for a sequence of random
variables that are bounded in some sense, moments-wise or otherwise, is that of the subsequence
principle. Initiated by H. Steinhaus (cf. The New Scottish Book (Wroclaw, 1946–1958), Problem
126), this notion has evolved via realizing (cf. Révész [232], Komlós [180], Chatterji [45], [46],
[47]) that the phenomenon of subsequences of special orthogonal sequences, like for example
lacunary subsequences of trigonometric and Walsh functions, behaving like sequences of indepen-
dent random variables is not restricted only to such distinctive sequences. Inspired by [232] and
[180], Chatterji, in a series of papers starting with [45] and exemplified by and listed in [46] and
[47], continued to establish more general corresponding analogues of the classical properties of
independent sequences, and propounded his subsequence principle (for more details we refer to
[186]). This principle asserts that every limit property enjoyed by all independent identically
distributed sequences satisfying some moment condition is shared by some, nonrandomly chosen,
subsequence of every sequence which satisfies the moment condition uniformly. Thus it became
a challenge (cf. J.F.C. Kingman [178]) to establish a general result to embrace all known special
cases that had to be proved in each instance of the principle so far. This, in turn, was achieved
by D.J. Aldous [2], [3], [4] via a general fundamental theorem subsuming all the known cases
of the subsequence principle till that time. Moreover, the latter papers have also given a fresh
impetus to the study of randomly indexed sequences of random variables, as well as to that of
Rényi mixing and stable limit theorems (cf. D.J. Aldous [5], D.J. Aldous and G.K. Eagleson [6]).

The papers [48] and [53] with ZdzisWlaw Rychlik were written in this renewed milieu for
randomly indexed sequences of random variables. For a short glimpse, let (S, d) be a separable
metric space equipped with its Borel σ–field B. Let {Yn, n ≥ 1} be a sequence of S–valued
random elements defined on a probability space (Ω,A, P ), and let {Nn, n ≥ 1} be a sequence
of positive integer-valued random variables defined on the same probability space. Assuming

Yn
D→ Y in (S, d) and Nn → ∞ as n→ ∞, then what further hypotheses are needed to deduce

YNn

D→ Y in (S, d)? Much of the previous work on this problem has used Anscombe’s condition
(cf. [11]), i.e., his “uniform continuity” hypothesis: for each ǫ > 0 there exists δ > 0 such that

lim sup
n→∞

P

(

max
|i−n|<δn

d(Yi, Yn) ≥ ǫ
)

≤ ǫ, (1.7)

in combination with Nn/kn
P→ λ, where λ is a positive random variable and kn are constants

going to infinity as n → ∞. Aldous [5] proved that Anscombe’s condition that is designed
for applications to normalized partial sums of stationary sequences is exactly the right one

when Nn/kn
P→ 1. He also gave some necessary and sufficient conditions for YNn

D→ Y in the

case when Nn/kn
P→ λ. It is shown in [48] that for applications to the nonstationary case a
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different hypothesis is appropriate, and analogues of known theorems are obtained accordingly.
Roughly speaking, the theorems in [48] extend Aldous’ results in [5] to the nonstationary case
(e.g., independent summands satisfying Lindeberg’s condition) via introducing a new version of
Anscombe’s condition, as well as a new assumption on the sequence of positive integer-valued
random variables that index the sequence of random elements in hand.

Paper [54] with Rychlik introduces yet another version of Anscombe’s condition which in
terms of real valued {Yn, n ≥ 1} reads as follows: a sequence {Yn, n ≥ 1} of random variables is
said to satisfy the generalized Anscombe condition with norming sequences of numbers {kn, n ≥
1} and {wn, n ≥ 1} if for every ǫ > 0 there exists a δ > 0 such that

lim sup
n→∞

P

(

max
i∈Dn(δ)

|Yi − Yn| ≥ ǫwn
)

≤ ǫ, (1.8)

where Dn(δ) := {i : |k2i − k2n| ≤ δk2n}.
When k2n = n, n ≥ 1, the condition (1.7) reduces to that of (1.6), i.e., to Anscombe’s

condition in [11]. If wn = 1, n ≥ 1, then (1.6) reduces to the version used in [48].
In [53] it is shown that the following two conditions are equivalent. (i) {Yn, n ≥ 1} satisfies

the generalized Anscombe condition (1.7) with norming sequences of positive numbers {kn, n ≥ 1}
and {wn, n ≥ 1}, and, as n → ∞, the sequence (Yn − θ)/wn converges weakly to a probability
measure µ, where θ is a real number. (ii) For every family {Nt, t ≥ 1} of positive integer-
valued random variables, as t → ∞, {YNt − θ)/wat , t ≥ 1} converges weakly to µ, provided
k2Nt
/k2at tends to 1 in probability as t → ∞, where {at, t ≥ 1} is a family of positive integers

such that at → ∞ as t → ∞. The implication that (ii) implies (i), in the special case k2n =
n, n ≥ 1, gives an affirmative answer to Anscombe’s conjecture in [11] on page 607. As a
simple consequence of the equivalence of (i) and (ii), Theorem 4 of [53] provides a method for
determining sequential stopping rules via giving a required accuracy of estimation of an unknown
parameter. In particular, Section 3 of [53] generalizes Anscombe’s Theorem 2 in [11], and gives a
general procedure for estimating, with given small standard error, the mean of some population,
as well as for finding a confidence interval of prescribed width and prescribed probability coverage
for the unknown mean of a population. Thus [53] extends some of the results that are presented
in Anscombe [12], and Chow and Robbins [54]. Paper [53] is also concerned with Rényi mixing
and stable randomly indexed limit theorems (cf. Rényi [223], [226], [227], [228], Rényi and
Révész [230], Kátai and Mogyoródi [161], Eagleson [107], Fischler [127], [23] with Fischler, [24]
with S. Csörgő, Aldous and Eagleson [6], Aldous [5], and for more recent references and results
S. Csörgő [77] in [V1], Kowalski and Rychlik [184] in [V1], Ćwiklińska and Rychlik [82] in [V2]).
In this regard Theorem 3 of [53] extends the results obtained by J.R. Blum, D.L. Hanson and
J.I. Rosenblatt [29], and S. Guiaşu [137].

2 Fr om M id-seventies to M id-eighties, a N ew Cour se of E vents

in Str ong I nvar iance, T heir I mpact on Gaussian and Related

P r ocesses: An I nter play T hen and B eyond

Invariance principles have evolved from two major sources: partial sum processes and empirical
processes. The main papers that have led to the theory of weak convergence in metric spaces are
Erdős and Kac [116], and Donsker [101] on partial sum processes, and Doob [104] and Donsker
[102] on empirical processes. Prohorov [216] and Skorohod [266] gave the theory its present form,
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as it is fully explored, expanded and formalized in Billingsley [27]. A completely new point of
view, namely the notion of strong invariance, was introduced in this subject by Strassen [272]
with the help of the Skorohod [267] embedding scheme. His results have generated an activity
which has played a crucial role in our understanding of what randomness is all about.

The first two joint papers of Miklós Csörgő with Pál Révész (cf. [27], [28]) were born in, and
inspired by, this mathematical milieu. Changing only numberings and the style of mentioning
references to fit the present volume, as well as our exposition, we quote from his tribute to Pál
Révész [186] in [B3], incorporating his lines into our own presentation.

Approximating partial sums and empiricals. On and around the first two papers
with Pál Révész, as described by Miklós Csörgő. “As we have just noted above, our first
joint papers (cf. [27], [28]), respectively titled “A new method to prove Strassen type laws of
invariance principle. I & II”, appeared in 1975. The first one of them was received on August 3,
1973, while the second one on November 30, 1973, both by ZfW. In the first round both were
quickly and summarily rejected. They have eventually been rescued for publication in the same
journal by Jack Kiefer, and thus the first steps of the ‘Hungarian construction school’ have also
become official.

The background of, and our inspiration for, paper [27] were as follows. Using the Skorohod
embedding scheme, V. Strassen [273] showed that independent identically distributed random
variables X1,X2, . . . , with EX1 = 0, EX2

1 = 1, E|X1|4 < ∞, can be constructed on the same
probability space as a standard Wiener process (Brownian motion) {W (t), 0 ≤ t <∞} so that,
as n→ ∞,

Zn := |S(n) −W (n)| = O((n log logn)1/4(log n)1/2) a.s., (2.1)

where S(n) :=
∑n

i=1Xi, and throughout as well.
In the same paper in 1965 Strassen also posed the following question. Let X1,X2, . . . be

independent identically distributed random variables with mean zero and variance one, and let
{W (t), 0 ≤ t < ∞} be a standard Wiener process on the same probability space such that, as
n→ ∞,

|S(n) −W (n)| = o((n log logn)1/4(log n)1/2) a.s. (2.2)

Is it true then that the distribution of X1 is standard normal?
J. Kiefer [173] proved that, in case of using the Skorohod [267] embedding scheme with

stopping times, say {Ti, i ≥ 1}, for the sake of establishing (2.1) under the there stipulated four
moments conditions of Strassen [273], one has the following exact version of (2.1)

lim sup
n→∞

|Zn|/((n log logn)1/4(log n)1/2) = (2β)1/4 a.s. (2.3)

where β := var(T1). Consequently, when β = 0, then X1
D
= N(0, 1), a standard normal random

variable. Thus, in this case, Kiefer answered Strassen’s question affirmatively via concluding
that replacing O by o in (2.1) does indeed imply that X1 is a standard normal random variable.
In other words, the rate of convergence in (2.1) cannot be improved via the Skorohod embedding
scheme, no matter what further restrictions one might put on the distribution function of the
random variable X1.

The answer to Strassen’s question in general, i.e., to posing the problem as stated in (2.2),
remained open. Moreover, in the light of Kiefer’s just quoted answer, any improvement of the
rate of convergence of the strong approximation in (2.1) could only come from a totally different
method of construction. A new method of construction, the so-called quantile transform method,
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was first developed in P. Bártfai [15] (cf. discussion of (2.5) and (2.6) below) and paper [27],
in the latter for the sake of giving a negative answer to Strassen’s general question as it is
posed via (2.2) above. Namely, roughly speaking, in [27]. (cf. also Theorem 2.5.1 and Section
2.6 of book [A1]) we established that, on assuming Cramér’s condition for the characteristic
function of the random variable X1, for any given 0 < ǫ < 1/2 one can assume enough moment
conditions for X1 of the independent identically distributed sequence X1, X2, . . . with EX1 = 0,
EX2

1 = 1, EX3
1 = 0, . . . such that with an appropriately constructed standard Wiener process

{W (t), 0 ≤ t <∞} on the same probability space, as n→ ∞, we have

|S(n)−W (n)| = o(nǫ) a.s. (2.4)

Following this line of thought, J. Komlós, P. Major, G. Tusnády [KMT] [181], [182] and
P. Major [191] ingeniously refined our quantile transform method and proved that, on assuming
only that the mean zero and variance one random variable X1 has p > 2 moments, (2.4) holds
true with ǫ = 1/p, and that this is the best possible strong invariance principle under this
assumption. As to X1 having only two moments, P. Major [192] proved that, in this case the
first strong invariance principle, namely that of Strassen [272], is best possible. Concerning the
question of Donsker’s theorem (cf. M. Donsker [101]) via strong approximations, we refer to
P. Major, Ann. Probab. 7 (1979), 55–61, and to pages 112 & 113 of book [A1].

These questions and answers are connected with the so-called “stochastic geyser problem”
(cf. Sections 2.2–2.4 of book [A1]). Suppose we assume that we observe the sequence

Vn = S(n) +Rn, n = 1, 2, . . . , (2.5)

where {Rn} is an arbitrary sequence of random variables. In statistical terminology the latter
can be viewed as a random error sequence when trying to observe {S(n)} in order to estimate the
distribution function of the random variable X1. A theorem of P. Bártfai [15] states that if Rn =
o(logn) a.s., and X1 has a finite moment generating function, then the sequence {S(n) + Rn}
determines the distribution function of X1 with probability one. Now, reformulating this result
in a strong invariance context via putting Rn = S(n)−W (n), one concludes (cf. Theorem 2.3.2
of book [A1]) that X1 must be a standard normal random variable. This formulation of Bártfai’s
just mentioned result of 1966 as a lower limit to the strong invariance principle for partial sums
of random variables was however realized only later on by KMT [181], [182], who thus also
concluded that the best possible strong approximation for any versions of S(n) andW (n) should
be

|S(n) −W (n)| = O(log n) a.s., (2.6)

and proved as well that the latter held true for all those possible distributions for X1 which have
a moment generating function in a neighbourhood of zero.

For a review of these and further related results we refer to Chapter 2 of book [A1], Chapter
1 of M. Csörgő and L. Horváth [A4] and, for weighted approximations of partial sum processes,
to [105] and B. Szyszkowicz [278], [280]. For an extension and refinement of the KMT results
to the non–i.i.d. case of partial sums, we refer to A.I. Sakhanenko [245], [246], [247], E. Berger
[19], U. Einmahl [110], [111] and Qi-Man Shao [256]. For a review of various approaches to
proving invariance principles we refer to W. Philipp [215]. For an extension of the Hungarian
construction approach to sums of vector valued random variables we refer to U. Einmahl [110],
[111], [112] and, for a glimpse at some more recent developments in this regard, to A. Yu. Zaitsev
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[310] and the references therein. A very useful companion work on approximating partial sums
of vector valued random variables is the I. Berkes and W. Philipp [22] paper. For example,
by combining the Berkes-Philipp blocking technique and the CsR quantile transform methods
of papers [27] and [28], Hao Yu [308] succeeds in almost surely approximating partial sums of
an associated sequence of random variables by appropriate partial sums of another associated
sequence with Gaussian marginals.

Though we have completed and submitted paper [27] to ZfW a bit earlier than [28], we were
initially intrigued and inspired by the landmark paper of J. Kiefer [175] and initiated our work in
conjunction on both. Our driving force for writing [28] was to understand Kiefer’s fundamental
results in the latter paper, in which he was first to construct an almost sure representation of the
empirical process by an appropriate two-time parameter Gaussian process. In particular, J. Kiefer
[175] succeeded in embedding the empirical process into an appropriate two-time parameter
Gaussian process via his ingenious extension of the Skorohod [267] embedding scheme to the case
of vector valued random variables. Due to our great admiration for these landmark achievements,
in paper [28] we called the latter Gaussian process the Kiefer process. D.W. Müller [202] gave
a proof of the convergence in law of the empirical process to a two-time parameter Gaussian
process of the same appropriate covariance function, as well as the first estimate of the error for
the convergence in distribution of certain functionals of the sequence of empirical processes.

Let U1, . . . , Un (n = 1, 2, . . .) be independent random d-vectors, uniformly distributed on
Id := [0, 1]d, d ≥ 1, and for each n define the uniform empirical process of these random
variables by

αn(y) :=
√
n

(∑n
i=1 11[0,y](Ui)

n
− λ(y)

)

, y ∈ Id, (2.7)

where λ(y) stands for Lebesgue measure of the d–dimensional interval (0, y].
A separable mean zero Gaussian process defined on [0, 1]d×[0,∞), {K(y, t); y ∈ Id, t ∈ IR1

+},
is called a Kiefer process if

EK(x, s)K(y, t) = (λ(x ∧ y)− λ(x)λ(y))(s ∧ t), (2.8)

where the minimum x∧ y is meant to be taken component wise and λ(·) is Lebesgue measure as
in (2.7), i.e., the Gaussian K(·, ·) is a Brownian bridge in its first argument and a Wiener process
in its second argument. Note that

√
nαn(y) as a two-time parameter process (non-Gaussian)

has the same covariance structure as that of a Kiefer process (Gaussian).
Using now this terminology, the almost sure invariance principle of J. Kiefer [175] reads as

follows: One can construct a probability space for U1, U2, . . . with a Kiefer process K(·, ·) on it
so that, as n→ ∞,

max
1≤k≤n

sup
y∈I1

∣

∣

∣

√
k αk(y) −K(y, k)

∣

∣

∣ = O(n1/3(log n)2/3) a.s. (2.9)

In paper [28] we combine the classical Poissonization technique (cf. M. Kac [159], and Chap-
ter 7 of book [A1] for historical remarks) with our quantile transform method and establish the
following result: One can construct a probability space for U1, U2, . . . with a sequence of Brow-
nian bridges {Bn(y); y ∈ Id, d ≥ 1}∞n=1 on it so that for any r > 0 there is a constant C > 0
such that for each n = 2, 3, . . .

P

{

sup
y∈Id

|αn(y) −Bn(y)| > C(log n)3/2n−1/2(d+1)

}

≤ n−r, d ≥ 1, (2.10)
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and with a Kiefer process {K(y, t); (y, t) ∈ Id × IR1
+} on it so that for any r > 0 there is a

constant C > 0 such that for all n ≥ 2

P

{

max
1≤k≤n

sup
y∈Id

|
√
k αk(y) −K(y, k)| > Cn(d+1)/2(d+2)(log n)2

}

≤ n−r, d ≥ 1. (2.11)

These “coupling processes” type inequalities for the uniform empirical and their approximat-
ing Gaussian processes are first of their kind in the literature. They imply strong (almost sure)
bridge type (resp., strong Kiefer type) invariance principles for αn(y) with the rates O(bn) a.s.
(resp., O(kn) a.s.), uniformly over the quadrants in Id, d ≥ 1, with

bn = (log n)3/2n−1/2(d+1) (resp. kn = (logn)2n−1/2(d+2)). (2.12)

We note that with d = 1, the respective rates bn and kn in (2.12) are not as good as the
respective corresponding ones of D. Brillinger [37] (cf. Theorem 4.3.1 in book [A1]) and J. Kiefer
[175] (cf. (2.9) above) are, which were obtained via Skorohod schemes of embedding. They
were however brand new for d ≥ 2 at that time, and their quantile transform method of proof
combined with the Poissonization technique was also new. Moreover, in the latter case of d ≥ 2,
this kind of combined approach to establishing better rates of the form as in (2.12) turned out
to be also the right one (cf. P. Massart [200]).

Right after papers [27] and [28], the dyadic scheme refinement of the quantile transform
method of KMT [181] resulted in their well known trade-mark exponential rates versions of (2.10)
and (2.11) when d = 1, which in turn respectively yielded the best possible rate bn = (log n)n−1/2

for the bridge type strong invariance principle, as well as the rate kn = (log n)2n−1/2 for the
strong Kiefer invariance principle when d = 1.

As to these first three landmark papers, i.e., [27] and [28] by CsR, and the just mentioned
KMT [181] exposition, we also like to refer to MR51 ##116005a,b, where in his foresighted
review of them more than 25 years ago, Jack Kiefer wrote:

These papers develop a new tool for obtaining error bounds in asymptotic theory,
perhaps the most novel technique since Skorohod embedding, and one that improves
strikingly on the latter. ... Extensions and refinements of all these results have since
been announced by various subsets of these five authors. This approach thus offers
great promise. ... The present stronger sample-space linkage has already exhibited
its applicability to a wide variety of new problems.

Some 17 or so years later, in his Foreword to [A4] with Lajos Horváth, commenting on that
book and the Hungarian construction, and counting [27] and [28] as one paper, David Kendall
writes:

The astonishing ‘Hungarian construction’ has become well known since its introduc-
tion in 1974-5 in two ZfW papers, one by Miklós Csörgő and Pál Révész and the
other by Komlós, Major and Tusnády. The literature revolving around this impor-
tant work is already immense. An account of it in book form was provided by Miklós
Csörgő and Pál Révész in 1981, but that book in itself will have stimulated a demand
for more, and now we have the latest (but surely not the last!) word on the subject,
this time by Miklós Csörgő and Lajos Horváth.
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Obviously, the ‘Hungarian construction’ is here to stay, and it has already found
applications to a wide variety of fields (including one to the archaeology of the
Neolithic period). How delighted Alfréd Rényi would have been to see that happen!

Still in the seventies, in addition to [27], [28], the papers [29] [32] [36] [40] [235], [236], [40]
and [45] have also played a fundamental role in the development and impact of the Hungarian
construction school, and some of that we will now briefly mention in the context of skipping
through some further advancements.

Concerning the uniform empirical process on [0, 1], which is easily extended to any arbitrary
distribution on IR1, J. Bretagnolle and P. Massart [36] (cf. also Section 3.1 of [A4]) give a new
proof for the KMT [181] approximation by Brownian bridges, while N. Castelle and F. Laurent-
Bonvalot [43] reprove their approximation by a Kiefer process. Both papers also provide explicit
constants in the respective KMT [181] inequalities.

Combining the classical Poissonization technique with the one dimensional dyadic scheme
refinement of the quantile transform method of KMT [181], P. Massart [200], in the context of
Lebesgue measure on Id = [0, 1]d as in (2.7) with d ≥ 2, gets as good rates of approximation as
possible in this particular multidimensional setting, both for Brownian bridge and Kiefer type
approximations. For example, over the class of quadrants or the class of Euclidean balls in
IRd, the Brownian bridge type strong invariance principle (resp. strong Kiefer type invariance
principle) holds with bn = (log n)3/2n−1/2d (resp. with kn = (log n)2n−1/2(d+1)). Thus, over the
class of quadrants in IRd, d ≥ 2, these results improve on the respective rates of the first two
strong invariance principles in this regard in paper [28] (cf. the respective quoted rates in (2.12)
above). For the empirical distribution over the unit cube I2 = [0, 1]2 the best available Brownian
bridge type approximation is due to G. Tusnády [289] with the rate bn = (log n)2n−1/2 that
coincides with the KMT [181] strong Kiefer invariance principle for d = 1 (cf. also N. Castelle
and F. Laurent-Bonvalot [43]). Lower bounds when d ≥ 2 are due to J. Beck [17]. The results of
P. Massart [200] also generalize Révész’s fundamental work in [235] and [236] on strong invariance
principles indexed by classes of sets with smooth boundaries, and improve on it as well when
d ≤ 6. For related works along these lines we refer to [32] and to R.M. Dudley and W. Philipp
[105].

I.S. Borisov ([33], [34]) also uses KMT type constructions to prove strong invariance principles
for empirical processes of multivariate random variables. The rates he obtains are less efficient
than the bn rates of P. Massart [200], but they hold for more general distributions than Lebesgue
measure on Id = [0, 1]d, d ≥ 2. For example, in Borisov’s case the rate bn = (log n)n−1/2(2d−1) for
approximating by Brownian bridges is valid for all distributions over the class of all quadrants
in IRd. Using the latter result of Borisov in combination with the method of paper [28] for
constructing a strong Kiefer type invariance principle from a Brownian bridge type invariance
principle, M. Csörgő and L. Horváth [101] obtain a strong Kiefer invariance principle that is
valid for all distribution functions over all quadrants in IRd with the rate kn = (log n)3/2n−1/4d.
The latter rate is best available in this context.”

From empiricals to quantiles. Paper [29], the third paper with Pál Révész in 1975,
initiates the study of the uniform quantile process in view of KMT [181] and Kiefer [174]. Let
U1, U2, . . . , Un (n = 1, 2, . . .) be independent copies of a random variable U , uniformly distributed
over the interval [0, 1]. Let

En(y) := (1/n)

n
∑

i=1

11(0,y](Ui), 0 ≤ y ≤ 1,
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denote the empirical distribution function based on U1, U2, . . . , Un, where 11A is the indicator
function of the set A. Let Gn = E−1

n be the left-continuous inverse of En and, à la (2.7), define
the uniform empirical and quantile processes over the interval [0, 1] respectively by

αn(y) := n1/2(En(y)− y), 0 ≤ y ≤ 1, (2.13)

un(y) := n1/2(Gn(y)− y), 0 ≤ y ≤ 1. (2.14)

We already mentioned the KMT [181] trade-mark exponential rates version of (2.10) and (2.11)
when d = 1. Their respective statements read as follows: One can construct a probability space
for U1, U2, . . . with a sequence of Brownian bridges {Bn(y); 0 ≤ y ≤ 1} on it so that one can
define positive absolute constants A, B, C such that

P

{

sup
0≤y≤1

|αn(y) −Bn(y)| > n−1/2(x+A log n)

}

≤ Be−Cx (2.15)

for all x > 0 and integer n ≥ 1, and one can also construct a probability space for U1, U2, . . .
with a Kiefer process {K(y, t); 0 ≤ y ≤ 1, t > 0} on it so that one can define positive absolute
constants A, B, C such that

P

{

max
1≤k≤n

sup
0≤y≤1

|k1/2αk(y)−K(y, k)| > (x+A log n) log n

}

< Be−Cx (2.16)

for all x > 0 and integer n ≥ 1.

The already mentioned new proof of the KMT inequality (2.15) by Bretagnolle and Massart
[36] concludes it with A = 12, B = 2, and C = 1/6. For details on the Bretagnolle and Massart
proof we also refer to Section 3.1 of book [A4].

The detailed proof of the KMT inequality (2.16) by Castelle and Laurent-Bonvalot [43] yields
it with A = 76, B = 2.028, and C = 1/41.

Using the notation and language of description that we introduced right after (2.10) and
(2.11), from (2.15) we conclude the rate bn = (logn)n−1/2 for the bridge type strong invariance
for αn when d = 1, i.e.,

sup
0≤y≤1

|αn(y)−Bn(y)| = O((log n)n−1/2) a.s., (2.17)

while (2.16) yields the rate kn = (log n)2n−1/2 for the strong Kiefer type invariance principle for
αn when d = 1, i.e.,

sup
0≤y≤1

|αn(y)− n−1/2K(y, n)| = O(n−1/2(log n)2) a.s., (2.18)

The rate of convergence in (2.17) is best possible (cf. KMT [181]), while that in (2.18) cannot
be improved beyond (logn) (cf. also Section 4.4 of [A1] and Theorem 3.1.2 of [A4]).

For further reference we quote also one of the KMT ([181], [182]) strong approximations for
partial sums Sn :=

∑n
i=1Xi, n ≥ 1, S0 := 0, of i.i.d. random variables X,X1,X2, . . . with mean

zero and variance one: Assume that E exp(tX) <∞ in a neighbourhood of t = 0. Then one can
construct a probability space for these random variables with a Wiener process {W (t); 0 ≤ t <
∞} on it so that

P

{

sup
0≤t≤T

|S[t] −W (t)| > A logT + x

}

≤ Be−Cx (2.19)

11



for all x > 0 and T ≥ 1, where A, B, C are positive constants which depend only on the
distribution of X.

This is the KMT result that we were hinting at when discussing (2.6) above. Using this
result, in paper [29] it is concluded that for the independent uniform–[0, 1] distributed random
variables U1, U2, . . . one can construct a probability space with a sequence of Brownian bridges
{B̃n(y); 0 ≤ y ≤ 1} on it so that

P

{

lim sup
n→∞

n1/2

log n
sup

0≤y≤1
|un(y)− B̃n(y)| ≤ K

}

= 1, (2.20)

where K is a positive absolute constant. In other words, the O((log n)n−1/2) rate of the bridge
type strong invariance principle for un(·) in (2.20) coincides with that of αn(·) in (2.17) above.
The respective sequences of Brownian bridges in (2.17) and (2.20) are different by construction,
i.e., they are not the same sequences of Brownian bridges. On the other hand, just like that
of αn(·) in (2.17), the rate in hand for approximating un(·) in (2.20) by a different sequence of
Brownian bridges is also best possible (cf. Remark 4.5.1 of [A1] and Theorem 3.2.2 of [A4]).

The proof of (2.20) is based on the KMT inequality (2.19), and on noting that in terms of
the above uniform–[0, 1] distributed independent random variables U1, U2, . . . we have

(Uk,n, k = 1, . . . , n)
D
= (Sk/Sn+1, k = 1, . . . , n) for each n = 1, 2, . . . , (2.21)

where Sn :=
∑n

i=1 log(1/Ui), n = 1, 2, . . ., (Uk,n, k = 1, . . . , n) for each n = 1, 2, . . . are the order

statistics of U1, . . . , Un, and
D
= stands for equality in distribution of the indicated two random

vectors.
The sum process

Rn(y) := αn(y) + un(y), 0 ≤ y ≤ 1, (2.22)

of the uniform empirical and quantile processes is known in the literature as the (uniform)
Bahadur-Kiefer process (cf. Bahadur [14], Kiefer [172], [174]). Bahadur [14] introduced Rn as
the remainder term in the representation un = −αn + Rn. The remainder term Rn, i.e., the
Bahadur-Kiefer process, is almost surely smaller asymptotically than the main term αn, and it
enjoys some remarkable asymptotic properties (cf. Bahadur [14], Kiefer [172], [174], and [185]
for a summary and related new results). One of them in [174] by Kiefer reads as follows:

lim sup
n→∞

n1/4(logn)−1/2(log log n)−1/4 sup
0≤y≤1

|Rn(y)| = 2−1/4 a.s. (2.23)

By combining (2.18) and (2.23), Csörgő and Révész in [29] observed that the Kiefer process
K0(y, t) = −K(y, t), with K(y, t) as in (2.18), approximates the uniform quantile process un as
follows:

lim sup
n→∞

n1/4(logn)−1/2(log log n)−1/4 sup
0≤y≤1

|un(y)− n−1/2K0(y, n)| = 2−1/4 a.s. (2.24)

In other words, the same Kiefer process that KMT [181] constructed for approximating αn as
in (2.18) via (2.16), approximates un as well via (2.23).

In view of (2.17) and (2.20) concluding best possible rates of approximation for αn and un
respectively via two different sequences of Brownian bridges, it appeared reasonable to write in
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[29], as well as in [40] and Remark 4.5.1 of [A1], that the rate of approximation in (2.24) should
probably be far from being best possible. For, indeed, in the light of (2.17) and (2.20) one was
inclined to believe that it should be possible to approximate un(·) by another Kiefer process
better than K0(·, n) does it in (2.24). Nevertheless Deheuvels [91] showed that for any Kiefer
process K1(·, ·)

lim sup
n→∞

n1/4(log n)−1/2(log log n)−1/4 sup
0≤y≤1

|un(y) − n−1/2K1(y, n)| > 0 a.s. (2.25)

and, consequently, having sup0≤y≤1 |un(y) − n−1/2K1(y, n)| = O(n−1/4−ǫ), as n → ∞, almost
surely for some ǫ > 0 with any Kiefer process K1(·, ·) is impossible. Thus the rate of convergence
in observation (2.24) is optimal not only for the Kiefer process K0(·, ·) = −K(·, ·), with K(·, ·)
as in (2.18), but also for any other Kiefer process K1(·, ·). For a discussion of this matter and
further references in this regard we refer to Deheuvels [92].

Standardized empiricals.In their paper [29] Csörgő and Révész also posed the problem of
studying the LIL behaviour of the standardized empirical process αn(y)/

√

y(1 − y), 0 < y < 1,
and, based on (2.16) and an LIL by Tusnády [290] for a Wiener sheetW (·, ·), they gave an answer,
but not a complete solution of the problem in hand, by showing that with ǫn = n−1(log n)4

lim sup
n→∞

sup
ǫn≤y≤1−ǫn

αn(y)

(2y(1 − y) log logn)1/2
= 21/2 a.s. (2.26)

This is to be contrasted with the upper limit 1 replacing 21/2 if ǫn is replaced by a fixed ǫ > 0. In
his fundamental paper [61] of 1977 E. Csáki gave a complete solution of this problem for a wide
class of sequences {ǫn}, ǫn ↓ 0, (cf., e.g., (2.51) in this exposé), and studied a number of related
ones as well (cf. also J.A. Wellner [298] in 1978, as well as G.R. Shorack [259] and E. Csáki [62]
in 1980). For more details, results and related references on the almost sure and in probability
LIL behaviour of the standardized empirical process we refer to [179], and to Theorem 5.1.6
and Remark 5.1.1 in [A1].

Studying general quantiles via their uniform versions.Quantiles are revisited in paper
[40] with Révész, a landmark study of strong approximations of quantile processes in general. In
view of the result in (2.20), the study of the uniform quantile process un (cf. (2.14)) is continued
in [40] on the same probability space via the representation of uniform order statistics in (2.21).
A complete analogue of (2.15) is established for un, which reads as follows: For the independent
uniform–[0,1] distributed random variables U1, U2, . . . one can construct a probability space with
a sequence of Brownian bridges {B̃n(y); 0 ≤ y ≤ 1} on it so that

P

{

sup
0≤y≤1

|un(y) − B̃n(y)| > n−1/2(x+A log n)

}

≤ Be−Cx (2.27)

for all x > 0, and integer n ≥ 1 where A, B, C are positive absolute constants.
Naturally, (2.27) implies (2.20). As quoted here, (2.27) is a slightly improved version of its

statement in [40] and [A1] in that here the restriction of 0 < x ≤ cn1/2, c > 0, is dropped in
favour of all x > 0 (cf. Theorem 3.2.1 in [A4] with Horváth). For a preliminary version of (2.27)
that was initially used to conclude (2.20), we refer to [29].

LetX,X1, X2, . . . be i.i.d. random variables with a distribution function F (·), which is defined
to be right continuous. The empirical distribution function Fn of the first n ≥ 1 of these random
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variables is defined to be right continuous, à la En(y) of (2.13).

Fn(x) := n−1
n
∑

i=1

11(−∞,x](Xi), −∞ < x <∞, (2.28)

or, equivalently, in terms of the order statistics X1,n ≤ . . . ≤ Xn,n of the random sample
X1, . . . ,Xn, as follows

Fn(x) :=







0, if −∞ < x < X1,n,
k/n, if Xk,n ≤ x < Xk+1,n, 1 ≤ k ≤ n− 1,
1, if Xn,n ≤ x <∞.

(2.29)

The nth empirical process βn is defined by

βn := n1/2(Fn(x) − F (x)), −∞ < x <∞. (2.30)

Let Q be the quantile function of the distribution function F , defined by

Q(y) = F−1(y) := inf{x : F (x) ≥ y}, 0 < y ≤ 1, Q(0) = Q(0+), (2.31)

i.e., Q is the left continuous inverse of the right continuously defined F . Consequently, a random
variable X with distribution function F has the same distribution as the random variable Q(U),
where U is a uniform–[0,1] random variable, i.e.,

X
D
= Q(U), (2.32)

since we have P{Q(U) ≤ x} = P{U ≤ F (x)} = F (x), −∞ < x <∞.
The empirical quantile function Qn is defined to be the left continuous inverse of the right

continuously defined empirical distribution function Fn,

Qn(y) = F−1
n (y) := inf{x : Fn(x) ≤ y}, 0 < y ≤ 1, Q(0) = Q(0+), (2.33)

i.e., we have

Qn(y) = F−1
n (y) =

{

X1,n, if y = 0,
Xk,n, if (k − 1)/n < y ≤ k/n, 1 ≤ k ≤ n. (2.34)

We note that, unless F has finite support, we have

P

{

lim
n→∞

sup
0<y<1

|Qn(y)−Q(y)| = ∞
}

= 1,

i.e., unlike in the case of the uniform quantile process un and that of the empirical process βn,
for quantiles in general we do not have a guaranteed Glivenko-Cantelli theorem. Also, only if
Q is continuous at y = y0 do we have almost surely that limn→∞Qn(y0) = Q(y0). Otherwise
this statement cannot be true. For further results and comments along these lines we refer to
Parzen [209]. In the light of these remarks it is clear that the “natural” general quantile process
γn that is defined à la un of (2.14) as

γn(y) := n1/2(Qn(y)−Q(y)), 0 < y < 1, (2.35)
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can, at best, be well behaved only at its points of continuity. Hence assume that F is a continuous
distribution function. Then Q satisfies

Q(y) = F−1(y) = inf{x : F (x) = y}, F (Q(y)) = y, 0 ≤ y ≤ 1, (2.36)

and we also have the so-called probability integral transformation

F (X)
D
= U, (2.37)

where U is a uniform–[0,1] random variable, on account of P{F (X) ≥ y} = P{X ≥ Q(y)} =
1−F (Q(y)) = 1− y. Consequently, in this case U1 := F (X1), U2 := F (X2), . . . are independent
uniform–[0,1] random variables, and the order statistics X1,n ≤ X2,n ≤ · · · ≤ Xn,n of the random
sample X1, . . . , Xn induce the order statistics U1,n := F (X1,n) ≤ · · · ≤ Un,n := F (Xn,n) of the
uniform–[0,1] random sample. Then, the thus induced uniform empirical distribution function
En of this uniform–[0,1] random sample is (cf. (2.29))

En(y) =







0, if 0 ≤ y < F (X1,n)
k/n, if F (Xk,n) ≤ y < F (Xk+1,n), 1 ≤ k ≤ n− 1
1, if F (Xn,n) ≤ y ≤ 1

= Fn(Q(y)), 0 ≤ y ≤ 1, (2.38)

and the similarly induced uniform empirical quantile function Gn is given by

Gn(y) = E−1
n (y) = inf {s : Fn(Q(s)) ≥ y}, 0 < y ≤ 1, Gn(0) = Gn(0+), (2.39)

i.e., we have

Gn(y) = F−1
n (y) =

{

F (X1,n), if y = 0,
F (Xk,n), if (k − 1)/n < y ≤ k/n, 1 ≤ k ≤ n

= F (Qn(y)), 0 ≤ y ≤ 1, (2.40)

Thus, in terms of Ui = F (Xi), i = 1, 2, . . . , n, we have for any continuous distribution
function F

βn(Q(y)) = αn(y), 0 ≤ y ≤ 1, (2.41)

where αn is the uniform empirical process as defined in (2.13). Hence, all theorems proved for
αn will hold automatically for βn as well, simply by letting y = F (x) in (2.41).

Unfortunately, there is no such immediate simple route for transforming γn of (2.35) into its
own corresponding uniform quantile process

un(y) = n1/2(Gn(y)− y)
= n1/2(F (Qn(y))− y), 0 ≤ y ≤ 1. (2.42)

A first step is via using the mean value theorem to write

γn(y) = n1/2(Qn(y)−Q(y))

= n1/2(Q(F (Qn(y))) −Q(y))

= n1/2(F (Qn(y)) − y)(1/f(Q(θn(y))))

= n1/2(Gn(y) − y)(1/f(Q(θn(y))))

= un(y)(1/f(Q(θn(y)))), 0 < y < 1, (2.43)
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where Gn(y) ∧ y < θn(y) < Gn(y) ∨ y, y ∈ (0, 1), n = 1, 2, . . ., provided of course that we
have Q′(y) = 1/f(Q(y)) < ∞ for y ∈ (0, 1), i.e., provided that F is an absolutely continuous
distribution function (with respect to Lebesgue measure) with a strictly positive density function
f = F ′ on the real line. The function f(Q(·)) is called the density-quantile function and
Q′(·) = 1/f(Q(·)) the quantile-density function by Parzen [206], [208]. For estimating the
quantile-density function we refer to [123] with Deheuvels and Horváth. For a recent view and
review of quantiles by Parzen, we refer to [211] in [V2].

The relationship (2.43) shows that if we expect to have the quantile process γn behave in
the same way as the uniform quantile process un does, then we should at least assume that F
has a strictly positive density function on the real line. Moreover, (2.43) also shows that, for
the sake of comparing γn with its associated un as in (2.42), one should multiply the former by
the density-quantile function f(Q). Hence, on assuming that f = F ′ exists on the real line, in
their paper [40], Csörgő and Révész define the general quantile process ρn by

ρn(y) := n1/2f(Q(y))(Qn(y) −Q(y)), 0 ≤ y ≤ 1. (2.44)

For further details on the train of thought on quantiles leading up to this definition of the
general quantile process, in addition to paper [40], we refer to related sections of the books [A1],
[A2], [A3], [A4], Shorack and Wellner [263], and paper [73].

We will now see that studying ρn via its own un as in (2.42) will also result in conveniently
comparing ρn with αn of (2.41) in the Bahadur [14] and Kiefer [172], [174] sense as well. On
the other hand, owing to the presence of the density-quantile function in its definition, ρn as
in (2.44) does not lend itself readily to constructing confidence bands for the quantile function
Q. In this regard we refer to paper [62] with Révész and Chapter 4 of book [A2]. Having only
confidence bands for Q in mind, it may be better to start with αn(y) of (2.41). Assuming only
that F is continuous, via this αn(y) = β(Q(y)), 0 ≤ y ≤ 1, one can, for example, easily arrive
at (cf. [112], or [113]; these two listings are identical in content)

lim
n→∞

P
{

Qn(y
−1/2
n c(α)) ≤ Q(y) ≤ Qn(y + n−1/2c(α)), ǫn ≤ y ≤ 1 − ǫn

}

= P

{

sup
0≤y≤1

|B(y) ≤ c(α)
}

= 1 − α, (2.45)

where B(·) is a Brownian bridge, c(α) is a positive real number for which we have the latter
equality hold true for α ∈ (0, 1), and {ǫn, n ≥ 1} is any sequence of real numbers such that
ǫn → 0 and n1/2ǫn → ∞, as n→ ∞.

Now, on account of (2.43) and (2.44), with θn(y) as in (2.43), we have

ρn(y) = un(y)(f(Q(y))/f(Q(θn(y)))), 0 < y < 1. (2.46)

Hence it appears to be reasonable to hope for an asymptotic theory of ρn that would resemble
that of un if one could only “regulate” the ratio f(Q(y))/f(Q(θn(y))) uniformly in y ∈ (0, 1).
As a first step in this direction, Csörgő and Révész in [40] show that if

(i) F is twice differentiable on (a, b), where

a = sup{x : F (x) = 0}, b = inf{x : F (x) = 1}, −∞ ≤ a < b ≤ ∞,
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(ii) F ′(x) = f(x) > 0, x ∈ (a, b), and

(iii) for some γ > 0 we have

sup
0<y<1

y(1 − y)|f ′(Q(y))|/f2(Q(y)) ≤ γ, (2.47)

then
f(Q(y1))

f(Q(y2))
≤

{

y1 ∨ y2
y1 ∧ y2

1 − (y1 ∧ yw)

1− (y1 ∨ y2)

}γ

(2.48)

for every pair y1, y2 ∈ (0, 1).

In the literature on nonparametric statistics, it is customary to define the so-called score
function (cf., e.g., Hájek and Šidák [142], p. 19):

J(y) := −f ′(Q(y))/f(Q(y)) = − d

dy
f(Q(y)). (2.49)

Thus, condition (iii) (2.47) can be written as

sup
0<y<1

y(1 − y)|J(y)|/f(Q(y)) ≤ γ. (2.50)

For examples and a discussion of tail monotonicity assumptions of extreme value theory as
related to (2.50), we refer to Parzen [208], [209].

The score function J of (2.49) plays an important role in nonparametric statistics in general,
and robust statistical analysis in particular (cf., e.g., Hájek and Šidák [142], and Huber [151]).
Owing to its importance, and because of our lack of knowledge of f in most practical situations,
it is desirable to estimate J , given a random sample on F . For results on estimating J , and for
further discussions along these lines, we refer to Hájek and Šidák ([142], p. 259), Parzen [208],
Chapter 10 of [A2], [76] with Révész, and Burke and Horváth [41].

Returning now to the problem of the general quantile process ρn versus its uniform version
un (cf. (2.42), when comparing these two processes in [40], Csörgő and Révész use a Csáki-type
law of the iterated logarithm for a uniform quantile process in combination with condition (iii)
(2.47) and its consequence (2.48). As mentioned already in view of the problem posed in [29] in
connection with (2.26), Csáki [61] studied the latter for a wide class of sequences {ǫn}, ǫn ↓ 0. We
quote here one special case, which reads as follows: With ǫn = dn−1 log log n and d ≥ 0.236 . . .,
we have

lim sup
n→∞

sup
ǫn≤y≤1−ǫn

|αn(y)|
(2y(1 − y)(log log n)1/2

= 21/2 a.s. (2.51)

Based on this result, in [40] Csörgő and Révész conclude

lim sup
n→∞

sup
δn≤y≤1−δn

|un(y)|
(2y(1− y) log log n)1/2

≤ 2 · 21/2 a.s. (2.52)

with δn = 25n−1 log log n.
We note in passing that in their Theorem 16.4.1 in [263], Shorack and Wellner establish

(2.52) with upper bound 2 instead of 2 · 21/2 and 9 replacing 25 in the definition of δn.
Using (2.52) in combination with (2.48), paper [40] viewed via [64] concludes (cf. also The-

orem 3.2.1 in [A2]) the following basic results: Let ρn and un be respectively defined in terms of
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Xk,n and Uk,n = F (Xk,n) as in (2.44) and (2.42), and assume the conditions (i), (ii) and (iii)
(2.47). Then, as n→ ∞,

sup
1/(n+1)≤y≤n/(n+1)

|ρn(y) − un(y)|

a.s.
=

{

O(n−1/2(log log n)1+γ), if γ ≤ 1

O(n−1/2(log log n)γ(log n)(1+ǫ)(γ−1)), if γ > 1,
(2.53)

for all ǫ > 0. Moreover, if in addition to (i), (ii) and (iii) (2.47), we also assume

(iv) limy↓0 f(Q(y)) > 0 and limy↑1 f(Q(y)) > 0, both finite, (2.54)

or

(v) if limy↓0 f(Q(y)) = 0, then f is non-decreasing in a right-neighbourhood of Q(0) = Q(0+),
and if limy↑1 f(Q(y)) = 0, then f is non-increasing in a left-neighbourhood of Q(1),

then, as n→ ∞,
sup

0≤y≤1
|ρn(y)− un(y)| a.s.= O(n−1/2 log log n) (2.55)

if (iv) obtains, and

sup
0≤y≤1

|ρn(y) − un(y)|

a.s.
=







O
(

n−1/2 log log n
)

, if γ < 1

O
(

n−1/2(log log n)2
)

, if γ = 1

O
(

n−1/2(log log n)γ(log n)(1+ǫ)(γ−1)
)

if γ > 1

(2.56)

for all ǫ > 0, if (v) obtains.

It is somewhat surprising that, in general, one needs an extra condition for going from
approximating ρn by un over the intervals [1/(n+1), n/(n+1)] (cf. (2.53)) to approximating ρn
by un on the unit interval [0, 1] (cf. (2.55) and (2.56)). Parzen [208] gave an example, via letting
1 − F (x) = exp(−x − C sinx), x ≥ 0, 1/2 < C < 1, in which case the conditions (i), (ii), (iii)
(2.47) are satisfied, the latter with γ = 1/(1 − c). Hence, we have (2.53) with γ = 1/(1 − C).
On the other hand, the conditions (iv), (v) (2.54) fail to hold. Nevertheless (cf. [64]), in case of
this example, we still have (2.56) as well, with γ = 1/(1 − C). Thus, for results like (2.55) and
(2.56), conditions (iv), (v) (2.54) are not necessary. For further details we refer to [64], and to
Section 5.4 of [A1].

In addition to [40], [64] for various versions of proofs, and further results and comments on
estimating the distance of ρn from un, we refer to Chapters 3–7 of [A1], [A2], Chapter 6 of [A4],
and to Sections 16.3, 16.4, 18.1 and 18.2 of Shorack and Wellner [263]. The proof of Theorem
18.2.1 in the latter book results in a slightly better rate than that of (2.56) in case of γ > 1.
Namely, if γ > 1, then the exponent of the log log n term of the rate function in Theorem 18.2.1
of [263] is 1 instead of γ as in (2.56).

However, as we will now see, the results in (2.53), (2.55) and (2.56) do not leave much room
for improvement, for on page 153 of [A1] it is shown that, if in addition to the conditions for
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(2.55) and (2.56), one assumes also that f is twice differentiable with |f”| bounded above, and
|f ′| bounded away from zero on a finite interval (ā, b̄) ⊂ (a, b), with (a, b) as in (i) (2.47), then

lim sup
n→∞

n1/2

log log n
sup
ā≤y≤b̄

|ρn(y)− un(y)| > KF > 0 a.s. (2.57)

for some constant KF depending on F .
This result is to be compared to having also

lim sup
n→∞

n1/2

log log n
sup

δn≤y≤δn

|ρn(y)− un(y)| < K a.s. (2.58)

under the conditions (i), (ii) and (iii) (2.47), where δn = 25n−1 log logn (cf. (2.52)) and the
constant K depends only on the value of γ in (2.48) (cf. (3.3) in [40], or (4.5.11) in [A1]). A
best available version of (2.58) is that of (18.2.9) of Shorack and Wellner [263] with K = γ2γ+3

and δn = 9n−1 log log n. Whichever way, (2.58) is seen to be best possible in the “middle” in
the sense of (2.57).

We note also that if we want to estimate the distance between un as in (2.42) and ρn as in
(2.44) only in probability, then, under the conditions (i), (ii) and (iii) (2.47), as n→ ∞, we have
(cf. Theorem 6.1.5 of [A4] with Horváth):

sup
1/(n+1)≤y≤n/(n+1)

|ρn(y) − un(y)| = OP (n−1/2 log log n). (2.59)

Commenting on (iii) (2.47), Parzen [209] (cf. [64], Sections 5.3, 5.4 of [A2], and page 651 of
Shorack and Wellner [263]) shows that if g := f(Q) and

lim
y→0 or 1

y(1− y) f
′(Q(y))

f2(Q(y))
= lim

y→0 or 1
y(1 − y)g

′(y)

g(y)
=

{

a0 at 0
a1 at 1,

(2.60)

then
y−a0g(y) and y−a1g(1 − y) are both slowly varying at 0. (2.61)

Moreover, if a0 ∨ a1 ≤ 0, then all absolute moments are finite, while if a0 ∨ a1 > 0, then

E|X |r <∞ if r < 1/(a0 ∨ a1). (2.62)

Studying (iii) (2.47), Mason [195] shows that if Q = F−1 is continuous, then for each
r1, r1 > 0 one has

lim
n→∞

sup
0≤y≤1

∣

∣

∣yr1(1 − y)r2(Qn(y)−Q(y))
∣

∣

∣

=

{

0 a.s. if E(X−)1/r1 <∞ and E(X+)1/r2 <∞
∞ a.s. if either of these expectations equals ∞, (2.63)

a Glivenko-Cantelli theorem for the general quantile process when properly “curbed” on the
tails.

In the light of having (2.55) and (2.56) under the conditions (i), (ii), (iii) (2.47) and (iv), (v)
(2.54) combined, as n→ ∞, we of course have as well

sup
0≤y≤1

|n−1/2ρn(y)| = sup
0≤y≤1

|f(Q(y))(Qn(y) −Q(y)| → 0 a.s., (2.64)
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a Glivenko-Cantelli theorem for n−1/2ρn.
In view of (2.60)–(2.64), Mason [195] also discusses the relationship between (2.63) and

(2.64), and concludes (2.64) à la (2.63) as follows: Assume that F has density f > 0 with a
continuous derivative on the support (a, b) of F (cf. (i), (ii) (2.47)). If for some 0 < γ1 <∞ and
0 < γ2 <∞

lim
y↓0
y
g′(y)

g(y)
= γ1 and lim

y↑1
(−1)(1 − y)g

′(y)

g(y)
= γ2 (2.65)

with g = f(Q) as in (2.60), then

lim
n→∞

sup
0≤y≤1

|n−1/2ρn(y)| → 0 a.s. (2.66)

For further results and comments along these lines we refer to [40], [64], [A1] and [A4].
The results in (2.53), (2.55) and (2.56) on approximating ρn by un can be transformed

into Gaussian approximations of ρn via (2.27) and (2.24) respectively, which reads as follows
(cf. also Theorem 3.2.4 in [A2]): Let ρn and un be respectively defined in terms of Xk,n and
Uk,n = F (Xk,n) as in (2.44) and (2.42), and assume the conditions (i), (ii) and (iii) (2.47) that
led to concluding (2.53). Then, on the probability space for (2.27) with the same sequence of
Brownian bridges {B̃n(y); 0 ≤ y ≤ 1} as in there, in view of (2.53) we have, as n→ ∞,

sup
1/(n+1)≤y≤n/(n+1)

|ρn(y)− B̃n(y)|

a.s.
=

{

O(n−1/2 log n), if γ < 2

O(n−1/2(log log n)γ(log n)(1+ǫ)(γ−1)), if γ ≥ 2,
(2.67)

where γ > 0 is as in (2.48) and ǫ > 0 is arbitrary. Also, under the same conditions, with the
Kiefer process {K0(y, t); 0 ≤ y ≤ 1, t ≥ 0} as in (2.24), we have

lim sup
n→∞

n1/4(log n)−1/2(log log n)−1/4 sup
1/(n+1)≤y≤n/(n+1)

|ρn(y)− n−1/2K0(y, n)|

a.s.
= 2−1/4. (2.68)

If, in addition to conditions (i), (ii), (iii) (2.47), we also assume (iv), (v) (2.54), then, as
n→ ∞, in view of (2.55),

sup
0≤y≤1

|ρn(y)− B̃n(y)| a.s.= O(n−1/2 log n) (2.69)

if (iv) obtains, and if (v) obtains, then in view of (2.56),

sup
0≤y≤1

|ρn(y)− B̃n(y)| a.s.=

{

O(n−1/2 log n), if γ < 2

O(n−1/2(log log n)γ(log n)(1+ǫ)(γ−1)), if γ ≥ 2,
(2.70)

where γ > 0 is as in (2.48) and ǫ > 0 is arbitrary. Moreover, on account of (2.24), (2.55) and
(2.56), if any one of (iv), (v) of (2.54) obtains, then

lim sup
n→∞

n1/4(log n)−1/2(log log n)−1/4 sup
0≤y≤1

|ρn(y)− n−1/2K0(y, n)| a.s.= 2−1/4. (2.71)

In view of result (2.25) by Deheuvels [91], the almost sure rate of convergence in (2.71) is, just
like that of (2.24), best possible. On account of the rate of approximation of un by a sequence
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of Brownian bridges B̃n as in (2.20) being best possible, so is also the rate of approximation of
ρn by the same sequence of Brownian bridges B̃n in (2.69) and that of (2.70) for γ < 2. The
rate of approximation in (2.70) when γ ≥ 2 is also best possible in terms of n−1/2, and there
does not seem to be much room for improvement for the powers of the log n and log log n terms.
It would however be desirable to have a version of the coupling inequality (2.27) for ρn and
B̃n as well. Extensions of Kiefer’s asymptotic theory to the general Bahadur-Kiefer

process.The quantile papers [29], [40] and [64], together with G.R. Shorack [260], also conclude
a randomized Gaussian (iterated Kiefer process) interpretation for the Bahadur-Kiefer process
(cf. R.R. Bahadur [14]), J. Kiefer [172], [174] and Theorem 4.1 of [167] with B. Szyszkowicz)
of uniformly distributed random variables via the KMT theorems in [181] and [182], and those
of A.H.C. Chan [44]. For developments on the problem of best possible approximation of the
uniform quantile process by a Kiefer and iterated Kiefer processes we refer to P. Deheuvels [91],
[92], [93]. We note that papers [40] and [64] also amount to a major extension of Kiefer’s
asymptotic theory of the uniform Bahadur-Kiefer process to the general Bahadur-Kiefer process.
For example, a combination of Kiefer’s result in (2.23) respectively with (2.53), (2.55) and (2.56)
leads to comparing in sup-norm the general quantile process ρn as in (2.44) under the respective
conditions of (2.53), (2.55) and (2.56) to the uniform empirical process αn as in (2.41). For
further details and results along these lines we refer to [A1], the 1983 SIAM monograph [A2],
book [A4], the papers [64], [167], [188], and Section 4.2 in Csáki et al. [69] in [V2]. For an
Lp–view of Bahadur-Kiefer processes we refer to [183] and [195] with Zhan Shi (cf. Theorem 4.4
in [69]). Path increments of Brownian motion and partial sums: a scenic route from

Erdős–Rényi laws to LIL.Back to the initial stages of strong approximations of partial sums
by a Wiener process and their interplay with studying fine analytic path properties of increments
of Brownian motion, we quote again from [186] by Miklós Csörgő in [B3].

“In connection with (2.5) and (2.6) above, we mentioned how a result of P. Bártfai [15] had
played a crucial role in settling the question of what the lower limit to the strong invariance prin-
ciple for partial sums of random variables should be like. On the other hand, the Erdős-Rényi
[117] new law of large numbers produced a new and direct proof of Bártfai’s just mentioned
theorem (cf. Proof of Theorem 2.3.1 in book [A1]) and thus had also given a tremendous in-
sight into the nature of what strong invariance versus strong measure determining noninvariance
principles are all about. Moreover, pivoting this fresh insight against the first strong invariance
principle for partial sums (cf. V. Strassen [272]), one realized that there must be a scale of theo-
rems in between Strassen’s LIL, the Erdős-Rényi ‘large increment’ laws, and beyond. Moreover,
the celebrated Paul Lévy moduli of continuity results for Brownian motion (Wiener process)
suggested a duality for these large and small increment laws. This is the kind of thinking that
is embodied for example in Lemmas 1.1.1 and 1.2.1 in book [A1], and which has earlier guided
us to the first two path-breaking papers [43] and [44] in this regard.

A preliminary version of the main result of paper [43] of 1979 is already quoted in their
presentation in Oberwolfach, March 28-April 3 1976, by M. Csörgő and A.H.C. Chan [34] (cf.
Theorem G of the latter). This also indicates that we began our work on these topics just about
at the time of publishing our first two papers [27] and [28] in 1975 together. Moreover, it was
our work on the paper [43] of 1979 that has inspired and led to the already mentioned Ph.D.
thesis of A.H.C. Chan [44] whose theorems on the Wiener sheet and the Kiefer process are then
quoted in Chapter 1 of book [A1] of 1981. This sequence of events and results have, in turn, also
led to many further important results in G.R. Shorack [260], W. Stute [274], and D.M. Mason,
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G.R. Shorack and J.A. Wellner [199] on strong oscillation theorems for the uniform empirical
and quantile processes. For further contributions along these lines we refer to [167], and to
P. Deheuvels [90], [91], [92], [93], where he also concludes that the J. Kiefer [174] and KMT
[181] based strong approximation of the uniform quantile process in paper [29] is best possible
(cf. (2.25)).

Back to the papers [43] and [44], per se they have initiated the contributions of the Hungarian
school to studying fine analytic path properties of increments of Brownian motion and related
stochastic processes. Thus they deserve to be singled out as fundamental first steps in this regard.
They have also played an important seminal role in many papers ever since their appearance.
The respective titles of the further well known papers [38], [39], [71], and [237] at the end of the
seventies speak for themselves, and so does also that of [49] in [B3]. The paper [71] in 1979 also
signals the beginning of Pál Révész’s illustrious collaboration with Endre Csáki. Starting with
C.M. Deo [99] and S.A. Book and T.R. Shore [32], the literature on and around the topics of
papers [43] and [44] has grown vast. For a glimpse of it we refer to Endre Csáki (1988, Doctoral
Dissertation), Csáki et al. [69] in [V2], B. Chen [49] in [B3], and [48]. The way it all began in
paper [43] looks like this:

Let aT be a monotonically non-decreasing function of T such that

(i) 0 < aT ≤ T

(ii) T/aT is monotonically non-decreasing.

Define

βT :=

(

2aT

(

log
T

aT
+ log log T

))−1/2

.

Then
lim sup
T→∞

sup
0≤t≤T−aT

βT |W (t+ aT )−W (t)| = 1, a.s.,

lim sup
T→∞

βT |W (t+ aT ) −W (t)|

= lim sup
T→∞

sup
0≤s≤T−aT

βT |W (T + s) −W (t)| = 1, a.s.,

and
lim sup
T→∞

sup
0≤t≤T−aT

sup
0≤s≤aT

βT |W (T + s) −W (t)| = 1, a.s.,

If we also have

(iii) lim
T→∞

log(T/aT )/ log log T = ∞,

then lim sup
T→∞

can be replaced by lim
T→∞

in the above statements.

Choosing, for example, aT as c log T , cT and 1 respectively, we get:

(a) For any c > 0, the Erdős-Rényi [117] law for Brownian motion

lim
T→∞

sup
0≤t≤T−c log T

|W (t+ c log T )−W (t)|
c logT

=

√

2

c
a.s.
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(b) For 0 < c ≤ 1, the LIL

lim sup
T→∞

sup
0≤t≤T−cT

|W (t+ cT ) −W (t)|
(2cT log log T )1/2

= 1 a.s.,

lim sup
T→∞

sup
0≤t≤T−cT

sup
0≤s≤cT

|W (t+ s)−W (t)|
(2cT log log T )1/2

= 1 a.s.,

and

(c) lim
T→∞

sup
0≤t≤T−1

|W (t+ 1)−W (t)|
(2 log T )1/2

= 1 a.s.

With c = 1 in (b) here, we get the classical LIL for Brownian motion, while (a) is a special
case of the general Erdős-Rényi [117] law. As in Chapter 1 of book [A1], in [43] the authors also
deduce P. Lévy’s uniform modulus of continuity for the Wiener process.

The original general version of the Erdős–Rényi [117] law reads as follows: Let X1, X2, . . . be
independent identically distributed random variables with mean zero and a moment generating
function R(t) := EetX1 that is finite in a neighbourhood of t = 0. Define

ρ(x) := inf
t
e−txR(t), (2.72)

the so-called Chernoff function of X1. Then, for any c > 0, as n→ ∞, we have

max
0≤k≤n−[c logn]

S(k + [c log n]) − S(k)
[c log n]

−→ α(c), (2.73)

where
α(c) := sup{x : ρ(x) ≥ e−1/c}. (2.74)

Moreover, the function α(c), c > 0, uniquely determines the moment generating function, and
hence also the distribution function, of X1.

For developments in the seventies on Erdős–Rényi laws we refer to J. Komlós and G. Tusnády
[183], S.A. Book [31], and S. Csörgő [75].

If we open the window wider than an = [c log n] in (2.73), for example so wide that
an/ log n → ∞ as n → ∞, then we see more than one single distribution, strong invariance
takes over from the Erdős–Rényi law and all partial sums with a moment generating function
will behave like Brownian motion as a consequence of combining the just quoted results of pa-
per [43] with KMT [181], [182]. For further results along these lines when the existence of the
moment generating function is not assumed, we refer to exposition [43], Chapter 3 of book [A1],
and Q-M. Shao [256].

In paper [44] of 1979 that in our thoughts evolved just about concurrently with [43] of 1979,
and [38] and [39] of 1978, the following modulus of non-differentiability is proved for the Wiener
process

lim
h↓0

inf
0≤t≤1−h

sup
0≤s≤h

√

8 log
h−1

π2h
|W (t+ s)−W (t)| = 1 a.s. (2.75)

and, studying the same problem over long time intervals, we arrive at

lim inf
T→∞

γT inf
0≤t≤T−aT

sup
0≤s≤aT

|W (t+ s) −W (t)| = 1 a.s., (2.76)
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where 0 < aT ≤ T , aT/T is non-increasing, and

γT :=

(

8(log(T/aT ) + log log T )

π2aT

)1/2

. (2.77)

If, as T → ∞, we also have log(T/aT )/ log log T ↑ ∞, then lim inf
T→∞

can be replaced by lim
T→∞

in

(2.76).
For examples with aT taking various values, we refer to Chapter 1 of book [A1]. In particular,

if aT = T , then (2.76) reduces to the so-called other LIL of K.L. Chung [56] when it is applied to
the Wiener process. The relationship of the result of (2.75) to a related result of A. Dvoretzky
[106] and that of S.J. Taylor [285] is discussed on page 85 of book [A1].

On combining these results of exposition [43] for the Wiener process with KMT [181], [182]
and A.A. Mogul’skǐı [201], one obtains corresponding results for similar min1≤n≤N−aN max1≤k≤aN |S(n+
k) − S(n)| increments of partial sums of i.i.d. random variables. In particular, we thus obtain
the other LIL of K.L. Chung (cf. also Section 3.3 of book [A1]) for partial sums of i.i.d. ran-
dom variables that are assumed to have only two moments, a result that was first proved to
be best possible under the latter condition by N.C. Jain and W.E. Pruitt [158]. In connection
with the Conjecture on page 122 of book [A1] that parallels the Erdős–Rényi [117] law via
min1≤n≤aN max1≤k≤aN |S(n + k) − S(n)|, we refer to the insightful exposition by E. Csáki and
A. Földes [65].”

For closely related developments we refer to [39] with A.H.C. Chan and P. Révész, Révész
[237], Bin Chen [48], [181] with B. Chen, and W. Wang [296].

For further reviews and recent advances on path properties of stochastic processes we refer
to the first five papers of [V2]. Csáki et al. [69] initiate their discussion with quoting from [43].
The second one in Part 1, [171] by Davar Khoshnevisan, also relates to [44], [50] and [A1].

The book [A1] with Pál Révész was already mentioned and referred to many times in our
discussion. Writing about the eighties in his tribute to Pál Révész, in [186] Miklós Csörgő rem-
inisces:

“Let me ... mention ... that we were glad to see book [A1] appear in 1981. On and off,
working on it, we were lucky to be able to spend a substantial part of the seventies together,
a most enjoyable period of our life, full with labouring aspiration and drive to succeed in our
task.”

In view of our survey of this period so far, and recalling also Kiefer’s already mentioned
review of [27], [28] and KMT [181], we note that Kiefer’s foresighted provision for the future of
this approach has come true. After the appearance of these first landmark papers, contributions
by mathematicians–probabilists–statisticians world-wide have made the Hungarian construction
school international, and it continues to play a prominent role in the theory and applications of
strong and weak invariance principles. Here we mention only the books and review papers in
this regard [A1], [A2], [A3], [A4], [A5], [263], [242], [63], [73], [193] and, for further information,
refer to the references therein. For example, there are more than 200 references up to 1993 that
are made use of in [A4]. We continue with quoting from the Preface of [A4]:

The 1981 book of Csörgő and Révész, “Strong Approximations in Probability and
Statistics”, reflects the birth and development of the Hungarian construction for
proving invariance principles for partial sums, empirical and quantile, as well as for
some related processes. It also studies the fine analytic properties of the approx-
imating Gaussian processes on their own, as well as for the sake of deriving new
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invariance principles for the approximated processes. This approach continues to
play an important role in the theory and applications of strong and weak invariance
principles. Vigorous and far reaching developments have taken place in these ar-
eas since the appearance of this book and the first fundamental papers it is based
on. We are pleased to say that the Hungarian construction school has since become
international, with many outstandingly significant contributions by mathematicians
from all over the world to the consolidation and manifold extensions of these tools
for strong and weak approximations.

For further glimpses of the interplay of Gaussian processes and strong approximations we
refer to [46], [51] to the review of the Shorack and Wellner book [263] by Miklós Csörgő [193],
and to the books [V1] and [B3] (cf. also Csáki et al. [69] in [V2]). Here we continue our
presentation of this interplay in a historical context in the first half of the eighties with occasional
glimpses beyond.

Révész’s paper [239] of 1982 establishes the first and best possible rates of convergence for
the above quoted CsR large increments of a Wiener process of paper [43]. This, in turn,
inspired [52] with Josef Steinebach (we were lucky to be privy to a preliminary version of [239]
of 1982 at Carleton University), where the first rate of convergence is proved for the Erdős–
Rényi [117] laws of large numbers. Consequently, exact rates of convergence were established
for the latter laws, together with that of L.A. Shepp [258], in various contexts of generalities
by P. Deheuvels, L. Devroye and J. Lynch [95], P. Deheuvels and L. Devroye [94]. For further
related contributions along these lines we refer to A. de Acosta and J. Kuelbs [89], J. Steinebach
[269], and D.M. Mason [196]. For some details on these results we refer to [189]. For more recent
developments along these lines we refer to Andrei N. Frolov, Teor. Veroyatnost. i Primenen. 48
(2003), no. 1, 104–121.

Best possible approximations of random walk local time by Brownian local time.
Path properties. Our next topic is random walk local time via invariance principles. Let
S(0) = 0, S(k) = X1 + · · ·+Xk, k ≥ 1, be a simple symmetric random walk, define its local time
(site)

ξ(x, n) := #{k : 1 ≤ k ≤ n, S(k) = x}, x = 0,±1,±2, . . . , (2.78)

and recall Paul Lévy’s notion of Brownian local time, {L(x, t); x ∈ IR1, t ≥ 0}, via the occupation
time

H(A, t) := λ{s : 0 ≤ s ≤ t, W (s) ∈ A} =

∫

A
L(x, t)dx, (2.79)

for any t > 0 and Borel set A of the real line IR1, where λ(·) is the Lebesgue measure and
{W (t); t ≥ 0} is standard Wiener process. H.F. Trotter [288] proved that the occupation time
random measure H(A, t) of W (·) is almost surely absolutely continuous with respect to λ(·) and
that its Radon-Nikodym derivative L(x, t) in (2.79), the local time of W (·), is continuous in both
arguments. The papers by K.L. Chung and G.A. Hunt [57], Ch. J. Stone [270], H. Kesten [167],
as well as the monographs by K. Itô and H.P. McKean Jr. [156], and F.B. Knight [179] show
impressively many ways that the asymptotic behaviour of ξ(·, ·) and L(·, ·) is similar. In [238]
Révész establishes the first strong invariance principle in this regard, with a rate of convergence
via an appropriate Skorohod-type construction, which concludes that on a rich enough probability
space, as n→ ∞,

sup
x

|ξ(x, n) − L(x, n)| = o(n1/4+ǫ) a.s. (2.80)
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for any ǫ > 0, where sup is taken over all integers.
Extending the latter result via Skorohod construction [72] with E. Csáki to the case of an

integer-valued recurrent random walk, where various moments of X1 are assumed to exist, the
authors also note that o(n1/4+ǫ) of Révész ’s result in (2.80) cannot be replaced by o(n1/4) for any
construction. This is on account of R.L. Dobrushin [100], where in case of the simple symmetric
random walk, as n→ ∞, it is concluded that

(ξ(1, n) − ξ(0, n))/(21/2n1/4) D→ Z1|Z2|1/2, (2.81)

while for Brownian local time it can be shown (cf., e.g., M. Yor [305]) that

(L(1, n) − L(0, n))/(2n1/4) D→ Z1|Z2|1/2, (2.82)

where Z1 and Z2 are independent standard normal random variables.
On the other hand, it follows from Theorem 1.2 of A.N. Borodin [35] that nǫ of (2.80) can be

replaced by log n so that (2.80) holds true with O(n1/4 log n). Moreover, Csörgő and Horváth
[109] conclude that Révész’s Skorohod-type construction is the best possible such construction
by showing that the following rate

sup
x

|ξ(x, n)− L(x, n)| = O(n1/4(log log n)1/4(log n)1/2) a.s. (2.83)

is exact for the same construction. Moreover, due to having also (cf. [69])

lim sup
n→∞

|ξ(1, n) − ξ(0, n)|/(n1/4(log log n)3/4) =

(

128

27

)1/4

a.s., (2.84)

as well as (cf. [108])

lim sup
n→∞

|L(1, n)− L(0, n)|/(n1/4(log log n)3/4) = 2 · 25/4

33/4
a.s., (2.85)

having
sup
x

|ξ(x, n)− L(x, n)| = o(n1/4(log log n)3/4) a.s., (2.86)

is impossible and, therefore, having (2.86) with O(n1/4(log log n)3/4) is best possible for any
construction. Thus, unlike when approximating partial sums by a Wiener process, the latter
best possible construction for random walk local time strong approximation is not much better
than the best possible Skorohod embedding rate of (2.83). Only the (log n)1/2 term of the latter
could be changed, and only to (log log n)1/2 by any other construction. We are not aware of any
such construction that would achieve this best possible minimal gain.

The authors of [109] also note that the best possible version of Révész’s Skorohod construction
as in (2.83) remains true if X1 takes only integer values and the moment generating function
of X1 is finite in a neighbourhood of zero. Consequently, in the latter case, (2.83) remains true
in the context of [72] as well. For further results along the lines of best possible approximations
when X1 is assumed to have only a finite number of moments, we refer to R.F. Bass and
D. Khoshnevisan [16].

Jump-started by Révész ’s paper [238] of 1980/81, in addition to the ones already mentioned,
there is a long sequence of further outstanding papers in the eighties, studying various aspects of
P. Lévy’s local time.
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Paper [71] extends the results of [72] that deal with approximating local times of partial sums
in the lattice case, to a suitably defined local time of a more general class of random walks. The
proofs in [71] involve two strong invariance principles that were proved via KMT construction
in [60] for approximating the occupation time of partial sums under sufficient moment, as well
as under finite moment generating function, conditions by that of a Wiener process (cf. (2.79)).
Also, in paper [71] the quest of proceeding from the just mentioned strong approximations of
occupation times to those of local times is facilitated by introducing a discrete version of the
Tanaka formula.

Paper [60] is revisited by Révész [243] in [V2]. One of the main aims of his paper is to
address the problem of estimating the Brownian local time process L(x, t) of (2.79) uniformly in
x on the real line and 0 ≤ t ≤ n, as n→ ∞, given only the observations W (1), W (2), . . . ,W (n).
Révész shows that a conjecture in [60] concerning one of the there proposed estimators of L(·, ·)
is not true. He then insightfully introduces a new, unbiased estimator that looks more natural
than the ones proposed and studied in [60]. In [60] the authors also obtain analogous results
for estimators of L(x, t), 0 ≤ t ≤ 1, via observations of W (t) at t = i/n, i = 1, 2, . . . , n.

A celebrated result of P. Lévy states (cf., e.g., F.B. Knight ([179], Theorem 5.3.7)) that

{Y (t),M(t); t ≥ 0} D
= {|W (t)|, L(0, t); t ≥ 0}, (2.87)

where M(t) := sup0≤s≤tW (s), Y (t) := M (t) −W (t), W (·) is a standard Wiener process, and
L(0, t) is its local time at zero.

The result of paper [58] on large increments of the local time L(·, ·) of Brownian motion
are analogous to those of [43] for a Wiener process that are quoted in part in Section 2.6. In
view of (2.87), in [58] the authors study large fluctuations of L(0, t) via those of M(t) in t. A
similar study of L(x, t) in t uniformly in x yields slightly different results. Hand in hand with
those of [43], these two sets of results have ever since played an important role in studying path
properties of various local times and additive functionals.

For local time analogues of the “how small” topics of [44] we refer to E. Csáki and A. Földes
[66], and for a review of further related results as well, to Sections 11.1–11.4 of [242], where some
Strassen type theorems of Csáki and Révész [73] are also discussed in this context in combination
with those of M.D. Donsker and S.R.S. Varadhan [103].

Inspired by [43], paper [58] with Csáki, Földes, Révész is the first joint work of Miklós
Csörgő with Endre Csáki and Antónia Földes. For a most insightful review of this continued col-
laboration, plus some more on strong approximation of local time and additive functionals, path
properties of Cauchy principal values of Brownian local time, iterated processes, level crossings
of the empirical process, Vervaat and Vervaat error processes and Banach space valued stochastic
processes, we refer to [69] the first paper in [V2] titled “Our joint work with Miklós Csörgő ”,
by Endre Csáki, Antónia Földes and Zhan Shi, with 85 references that include [A1], [A2], [43],
[44], [58], [102], [108], [115], [119], [125], [130], [133], [134], [150], [152], [153], [156], [164],
[167], [195], [170], [172], [176], [178], [182], [183], [185] and [187]. This beautiful exposition
much facilitates our own review of Miklós Csörgő’s contributions to studying fine analytic path
properties of Gaussian and related stochastic processes. In particular, for details on the just
mentioned papers and many other related ones that are quoted in there, we conveniently refer
to [69], published in [V2]. Most of these works are also discussed in [179] and [186], the latter
in [B3].

In view of [69] in [V2] that takes off from [43], [44], and surveys joint work with Miklós
Csörgő from 1983 to 2002 on path properties of stochastic processes, we list here the papers [34],
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[38], [39], [50], [51], [52], [60], [69], [77], [78], [95], [103], [114], [122], [124], [127], [131],
[136], [138], [139], [140], [144], [145], [151], [165], [180] and [181] that, globally speaking, can
also be classified as works on studying fine analytic properties of the path behaviour of stochastic
processes. Though the expositions [34], [38], [39], appeared earlier than [43] and [44], the former
three are follow-up investigations to [43]. Paper [44] (cf. (2.75)–(2.76) in this essay) inspired
[50] with Révész, where the authors conclude that the Wiener sheet is nowhere differentiable
in any direction in the open unit square. Naturally, mutatis mutandis, the same holds true
in the case of higher time parameter Wiener random fields as well. For nondifferentiability of
curves in general on the Brownian sheet, we refer to R.C. Dalang and T. Mountford [83] and to
Section 6 of Khoshnevisan [171] in [V2]. The papers [102], [103], [114], [115] with Zheng-yan
Lin, together with B. Schmuland [250], [251], and I. Iscoe and D. McDonald [153], [154] initiate
the study of the path properties of the infinite dimensional Ornstein-Uhlenbeck processes that
were introduced by Donald A. Dawson [87] (cf. (3.62) and (3.63)). For a review of further
developments we refer to the books [188], [189] and the references therein, as well as to Section
5 of Csáki et al. [69] in [V2].

“Mesure du voisinage”, and long Brownian and random walk excursions.We con-
tinue with quoting from [186] by Miklós Csörgő in [B3].

“The definition of the local time of a standard Wiener process W (·) (cf. (2.79)) is extrinsic
in the sense that, given the random set with t > 0 fixed,

At := {s : 0 ≤ s ≤ t,W (s) ∈ A} (2.88)

of the occupation time H(A, t) of W (·) as in (2.79), one cannot recover the local time L(x, t)
for any x ∈ A ⊂ IR1 via this definition.

Seeking an intrinsic definition, P. Lévy ([187], p. 226) proposed the following approach to
this problem: Let N(h, x, t) be the number of excursions of W (·) away from x that are greater
than h in length and are completed by time t. Then the “mesure du voisinage” of W (·) at time
t is defined to be limh↓0 h

1/2N(h, x, t), which is shown by Lévy (cf. K. Itô and H.P. McKean, Jr.
([156], p. 43)) that for all x ∈ IR1 and all positive t one has

lim
h↓0
h1/2N(h, x, t) =

√

2

π
L(x, t) a.s. (2.89)

Note that the “mesure du voisinage”, say at x = 0, can be computed in terms of the zeros
of W (t) alone. Hence, this gives an intrinsic meaning to L(0, t), as well as to L(x, t) via (2.89)
for any x ∈ IR1.

Ed Perkins [212] in 1981 showed that the exceptional null sets, which may depend on x, can
be combined into a single null set off which the above convergence is uniform in x. Paper [77]
with Révész in 1986 re-establishes Perkins’ uniform in x version of Lévy’s result and concludes
also the following rate of convergence estimate for any fixed t

sup
x∈IR1

∣

∣

∣

∣

∣

(

π
h

2

)1/2

N(h, x, t) − L(x, t)

∣

∣

∣

∣

∣

= o

(

h1/4 log
1

h

)

a.s. (2.90)

as h ↓ 0, as well as a similar one in the case when a Wiener process is observed for a long time
t and the number of long (but much shorter than t) excursions is considered. For a review of
these and some related results we refer to Sections 13.2 and 13.3 of book [242].
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In paper [78] with Révész and Horváth in 1986 it is shown that the rate of convergence in
(2.90) is nearly best possible even for a fixed level. Looking at some further developments now
in this regard, it follows from Theorem 1 of L. Horváth [148] that for a fixed level x ∈ IR1 the
best possible rate of convergence in (2.90) is O(h1/4(log log(1/h))1/2) with the exact “constant”
(2π)1/4(L(x, t))1/2. Furthermore, without being able to identify the exact constant, it is shown
by D. Khoshnevisan [169] that the best possible rate of convergence in (2.90) in the case of
supx∈IR1 is O(h1/4(log(1/h))1/2). We note in passing that the result in (2.90), as well as that of
the latter best possible version by Khoshnevisan, hold uniformly in t ∈ T as well, where T is an
arbitrary nonrandom compact subset of [0,∞).

In addition to the just mentioned best possible improvement of (2.90), D. Khoshnevisan [169]
also establishes similar best possible rates of convergence, with specified exact constants, for the
uniform and local approximations of Brownian local times by P. Lévy’s occupation time, and
for his so-called downcrossing theorem.

Concerning the already hinted at analogue of (2.90) for long excursions in a long time, in[77]
the following result is proved: For some 0 < α < 1 let 0 < at < t

α be a nondecreasing function
of t so that at/t is non-increasing. Then, as t→ ∞,

sup
x∈IR1

∣

∣

∣

∣

√

π
at
2
N(at, x, t)− L(x, t)

∣

∣

∣

∣
= o

(

(tat)
1/4 log

t

at

)

a.s. (2.91)

For a random walk analogue of this result with a similar rate of convergence, as well as for
further related ones along these lines, we refer to Section 13.2 of [242] and, borrowing a bit from
the nineties, to paper [131] with Révész (cf. (2.92) below). The problem of best possible exact
rates of convergence in this context, including that of (2.91) and its local version, appear to be
still open.”

The above hinted at random walk analogue of (2.91) reads as follows. Let S(k) be a simple
symmetric random walk with local time ξ(x, n) as in (2.78). Let M(a, x, n) be the number of
excursions of duration greater than a of S(k), k = 0, 1, . . ., away from x ∈ ZZ1 that are completed
by time n. Then, as n→ ∞,

sup
x∈ZZ1

∣

∣

∣

∣

√

πan
2
M(an, x, n) − ξ(x, n)

∣

∣

∣

∣
= o((nan)

1/4 log(n/an)) a.s., (2.92)

where an is a sequence of integers such that n−1/5an → ∞ and an ≤ nα for some α ∈ (0, 3/5].
When discussing above the optimal nature of Révész’s Skorohod-type construction in [238],

we made references to, and cited as well, some fundamental results in (2.81) and (2.82) from
R.L. Dobrushin [100] and M. Yor [305], respectively, and (2.84), (2.85) from [69], 108], respec-
tively. In this regard we note that the famous theorem of R.L. Dobrushin [100] that is quoted
in (2.81) and an extension of his method of proof have, for example, led to the result that is
quoted in (2.84) from paper [69], as well as to further results in there, on studying the intuitive
notion that ξ(x, n) is close to ξ(y, n) if x is close to y, i.e., the stability of the local time of a
symmetric random walk (cf. (3.48) and (3.49) in this exposition). The results in [69] along these
lines were improved and also extended to Brownian local time by E. Csáki and A. Földes [67],
[68]. In particular, in their 1988 paper [68] they give a direct proof of the result that is quoted
from paper [108] in (2.85).

Strong approximations of increments from zero of Brownian local time and ran-
dom walk additive functionals by iterated processes. The influential paper [108] with
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E. Csáki, A. Földes and P. Révész in 1989 establishes a strong embedding theorem for the local
time increment L(x, t) − L(0, t) of a Wiener process into 2W (x, L̂(0, t)), x ≥ 0, where L̂(0, t)
is the local time of Wiener process that is independent of the Brownian sheet W (x, t) and it is
also near enough to L(0, t). For details we refer to Section 2.2 of [69] in [V2].

In a similar vein, in [134] the authors establish strong approximations of additive functionals
of a sequence of partial sums {Si}∞i=0 of i.i.d. integer valued random variables. Namely, à la
dealing with L(x, t) − L(x, 0) in [108], in [134] they study

n
∑

i=1

f(Si)− f̄ ξ(0, n) via constructing W (2)

(

1

σ2
L(1)(0, nσ2)

)

(2.93)

to be a.s. near enough to it, where f(x), x ∈ ZZ1, is such that f̄ :=
∑∞

x=−∞ |f(x)| <∞, ξ(0, n)

is the local time of Si at zero up to time n, σ2 = EX2
1 , W

(1)(·) and W (2)(·) are two independent
standard Wiener processes, L(1)(0, ·) is local time of W (1)(·), and σ2ξ(0, n) and L(1)(0, nσ2) are
constructed to be a.s. near enough to each other as well. For details we refer to Section 2.3
of [69] in [V2]. Some of the consequences in case of a simple symmetric random walk read as
follows:

ξ(1, n) − ξ(0, n)
√

2ξ(0, n)

D→ Z1, as n→ ∞, (2.94)

n−1/2(ξ(0, n))
D→ |Z2|, as n→ ∞, (2.95)

and a statement that is identical to that of Dobrushin’s theorem in (2.81), where Z1 and Z2 are
independent standard normal random variables.

The strong law in (2.84) can also be deduced from the more general results of paper [134]
where, in addition to the already mentioned additive functionals, the authors also deal with a
similar strong approximation of

∫ t
0 g(W (s))ds =

∫∞
−∞ g(x)L(x, t)dx, where g(·) is assumed to

be integrable on IR1 and W (·) is standard Brownian motion. We note also that the result in
(2.85), which is one of the strong consequences of the strong invariance principle of paper [108],
can also be deduced from results of [134] concerning strong approximations of

∫ t
0 g(W (s))ds =

∫∞
−∞ g(x)L(x, t)dx.

As evidenced by these discussions of the local time milieu after Révész’s paper [238] of
1980/81, the interplay of, and the progress made by, the papers [69], E. Csáki and A. Földes
[67], [68], [108] and [134] constitute impressive developments in studying local times and additive
functionals. They also initiate the more recent investigations on the old problem of finding rates
of convergence in the ratio ergodic theorem. Paper [134] is already a step in this direction as
well, followed by E. Csáki and M. Csörgő [152] on additive functionals of Markov chains, and
more recently expounded on by Xia Chen [50]. For further developments along these and many
other related lines we refer to [242], the papers [187], [70] and [74] in [B3], and to the book of
Davar Khoshnevisan [170].

Testing for independence. Back to empirical processes, paper [42] initiates a study of the
Hoeffding, Blum, Kiefer, Rosenblatt multivariate empirical process via strong approximations.
Let Fn(x), x = (x1, . . . , xd) ∈ IRd, be the empirical distribution function based on a random
sample of random d–vectors (d ≥ 2) of a continuous distribution function F , and denote by
Fni(xi), i = 1, . . . , d, the corresponding marginal empirical distribution functions. Based on the
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process

Tn(x) := Fn(x)−
d
∏

i=1

Fni(xi), d ≥ 2, (2.96)

W. Hoeffding [146], when d = 2, and J.R. Blum, J. Kiefer and M. Rosenblatt [30], when d ≥ 2,
constructed distribution-free tests of independence. In [42] strong invariance principles are
established by approximating Tn(x) by appropriate Gaussian processes. Papers [47], [55] report
on further developments along these lines, culminating in the papers [56] and 66] with Derek
S. Cotterill.

As of [56], let Vn,d(x), d ≥ 1, x ∈ IR1, be the distribution function of the classical Cramér-von
Mises statistic based on n independent d–dimensional random vectors distributed uniformly on
the unit cube of IRd, and let Vd(x) be the limiting distribution function of Vn,d(x) as n → ∞.
The authors deduce from basic results of F. Götze [133] that

∆n,d := sup{x ∈ IR1 : |Vn,d(x) − Vd(x)|} = O(n−1) for any d ≥ 1. (2.97)

Recursive formulae are given for all the moments and cumulants corresponding to the limiting
Vd. Using the Cornish-Fisher asymptotic expansion, based on six cumulants, the authors compile
tables of the critical values of Vd, corresponding to the usual testing levels. These tables run
from d = 2 to 50. Such tables were previously known only for d = 1, 2, 3. An interesting finding
is that Kk,d = O(e−d), as d→ ∞, for the kth cumulant Kk,d. Consequently, the tables presented
become more and more precise as the dimension grows (cf. p. 239 of [56]).

Studying the Hoeffding [146], Blum, Kiefer and Rosenblatt [30] independence criterion, paper
[66] builds on results of the latter papers and those of [42]. Let Tn(x) be as in (2.96), and define
the Gaussian process T (·) by

{T (y); y ∈ Id, d ≥ 1} :=

{

B(y)−
d

∑

i=1

B(1, yi,1)
∏

j �=i

yj; y = (y1, . . . , yd) ∈ Id, d ≥ 2

}

, (2.98)

where {B(y); y ∈ Id, d ≥ 1} is a Brownian bridge over the d–dimensional unit cube Id. With
Tn and T as in (2.96) and (2.98) respectively, let Γn,d be the distribution function of the random

variable Cn,d :=
∫

IRd nT 2
n(x)

∏d
i=1 dFi(xi), where Fi(xi) is the ith marginal of the underlying

continuous distribution function F , and let Γd be the distribution function of the random variable
Cd :=

∫

Id T
2(y)dy. Blum, Kiefer, Rosenblatt [30] obtained the characteristic function of the

random variable C2 and tabulated critical values for Γ2. With the help of their representation
of the Gaussian process T (·) as in (2.98), the authors in [66] find the characteristic function of
the random variable Cd for d ≥ 2, give details as to how to calculate critical values of Γd for all
d ≥ 2, and provide tables for the usual testing levels of significance for d = 2 to 20. With Tn, Fn
and Fni as in (2.96), the latter are also shown to be approximate critical values for the statistics
Ĉn,d :=

∫

IRd nT 2
n(x)dFn(x) and C̃n,d :=

∫

Rd nT
2
n(x)

∏d
i=1 dFni(x), whose large values can be used

as critical regions for H0 : F ∈ F0, where F0 is the class of all those continuous distribution
functions which are products of their associated one-dimensional marginal distribution functions.
Put ▽n,d = sup0≤x<∞ |Γn,d(x) − Γd(x)|, d ≥ 2. Using their characteristic function of Cd and
the invariance results of [42] for the process Tn(·) as in (2.96), the authors in [66] also conclude
rates of convergence for the latter distance as follows (cf. also Tusnády [289], and (2.10) in this
exposition):

▽n,d =

{

O(n−1/2 log2 n) if d = 2,

O(n−1/2(d+1)(log n)3/2 if d ≥ 3.
(2.99)
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In view of (2.97) it is reasonable to believe that in (2.99) one should have ▽n,d = O(n−1) for
any d ≥ 2. For comments on this problem we refer to page 10 of [66]. A summary of the papers
[42], 47], [55] [56], [66] can be found in [68].

On the 1981 NSF-CBMS Regional Conference on Quantile processes. The quantile
papers [29], 40] and book [A1] with Pál Révész played a seminal role in the ten lectures given
by Miklós Csörgő as Principal Lecturer of the National Science Foundation (NSF)–Conference
Board of the Mathematical Sciences (CBMS) Regional Conference on Quantile Processes at
Texas A & M University in 1981, which was foresightedly organized by Emanuel Parzen. The
already frequently mentioned 1983 SIAM monograph [A2] resulted from these ten lectures, while
featuring also some of the topics of [29], [30], [40], [A1], [41], [42], [49], [54], as well as those
of the preliminary versions of [57], [59], [61], [62], [64], [65], [67], [70], [73], [76] and [A3]. As
regards the latter papers, we note that papers [64] and [67] also signal the beginning of Miklós
Csörgő’s collaboration with Lajos Horváth. Paper [64] has already been mentioned on occasions
when dealing with the landmark quantile papers [29], [40] in some detail in Section 2. As to
[67] and its relationship to [A2], we are to say a few words now.

Quantiles under random censorship. The sample distribution function for censored bio-
statistical observations is defined by the Kaplan-Meier product-limit (PL) estimator (cf. Kaplan
and Meier [160]). There is an immense literature dealing with this estimator, and it is widely
used in applications. On the other hand, Parzen [211] in [V2] notes that, in his opinion, the
sample quantile (inverse distribution) of the Kaplan-Meier estimator is a neglected diagnostic
tool. This indeed appears to be true, though the theoretical foundations for using this diag-
nostic tool are also well established. In particular, Chapter 8 of [A2] that is based on two
Carleton University technical reports in 1982, one by E.-E. Aly and M. Csörgő and the other
by L. Horváth, studies the problem of strong approximation of the uniform PL–quantile process
via an appropriately normalized generalized Kiefer process, as well as the distance of the latter
uniform PL–quantile process from the corresponding general PL–quantile process under the con-
ditions (i), (ii), (iii) of (2.47) and (iv), (v) of (2.54). Improved versions of the results of Chapter
8 of [A2] can be found in paper [67]. Moreover, [116] with C.-J.F. Chung and L. Horváth deals
with constructing confidence bands for quantile function under random censorship (cf. also [55]).

Empirical reliability and concentration processes. We quote from the PREFACE of
the 1986 Springer-Verlag monograph [A3] with Sándor Csörgő and Lajos Horváth:

Miklós Csörgő and David M. Mason initiated their collaboration on the topics of this
book while attending the CBMS-NSF Regional Conference at Texas A & M Univer-
sity in 1981. Independently of them, Sándor Csörgő and Lajos Horváth have begun
their work on this subject at Szeged University. The idea of writing a monograph
together was born when the four of us met in the Conference on Limit Theorems in
Probability and Statistics, Veszprém 1982. This collaboration resulted in No. 2 of
Technical Report Series of the Laboratory for Research in Statistics and Probability
of Carleton University and University of Ottawa, 1983. Afterwards David M. Mason
has decided to withdraw from this project. The authors wish to thank him for his
contributions. In particular, he has called our attention to the reverse martingale
property of the empirical process together with the associated Birnbaum-Marshall
inequality (cf. the proofs of Lemmas 2.4 and 3.2) and to the Hardy inequality (cf. the
proof of part (iv) of Theorem 4.1). These and several other related remarks helped
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us push down the moment conditions to EX2 < ∞ in all our weak approximation
theorems.

Reviewing this book in Short Book Reviews ISI, Charles M. Goldie of University of Sussex
writes:

Readership: Statistician, reliability theorist, economist, biometrician

The ‘total time on test’ is used in reliability engineering, the ‘Lorenze curve’ in eco-
nomics, and ‘mean residual life’ in biostatistics. Here is a unified treatment of the
asymptotics of all these, based on strong approximation of stochastic processes and
the authors’ powerful quantile methods. Processes relating to the above statistics
involve sums of order statistics in some form, and other such processes are intro-
duced for specific purposes. Approximating processes are Gaussian. The treatment
is clear and thorough and quite concrete, and the asymptotics of many specific func-
tionals are worked out. Estimation procedures including bootstrap methods are also
considered.

3 Fr om the M id-eighties on into the T wenty-fir st Centur y

Weighted approximations of empirical and quantile processes. The 1983 SIAM mono-
graph [A2], together with the papers [29], [40], [64] and the 1986 Springer-Verlag monograph
[A3] on empirical reliability have led to the collaboration of Mikós Csörgő, Sándor Csörgő, Lajos
Horváth and David M. Mason [CsCsHM] on the fundamental paper [74] on weighted approxi-
mations of empirical and quantile processes. The CsCsHM [74] proof of these approximations
in weighted sup-norm metrics is based on a refinement of the CsR [40] inequality as quoted
in (2.27), which in turn is based on the KMT [181] inequality as cited in (2.19). The desired
modification of the CsR [40] inequality (2.27) in CsCsHM [74] is to “pick up” the tail behaviour
of the approximation via modifying the construction, and it reads as follows: There exists a
probability space with independent uniform–[0, 1] random variables U1, U2, . . . , and a sequence of
Brownian bridges B1, B2, . . ., such that for all n ≥ 1, 1 ≤ d ≤ n and x > 0

P
{

sup
0≤y≤d/n

|un(y) −Bn(y)| > n−1/2(a1 log d+ x)
}

≤ b1 exp(−c1x) (3.1)

and
P
{

sup
1−d/n≤y≤1

|un(y)−Bn(y)| > n−1/2(a2 log d+ x)
}

≤ b2 exp(−c2x), (3.2)

where ai, bi, ci (i = 1, 2) are suitable positive constants.
For details of proof we refer to [74] and Section 3.2 of Csörgő and Horváth [CsH] [A4]. With

d = n the inequalities (3.1) and (3.2) coincide and, on the CsCsHM [74] probability space, yield
(2.20) with the Brownian bridge sequence {Bn} as in (3.1) ≡ (3.2). Due to (2.23), this particular
sequence of Brownian bridges approximates the uniform empirical process αn (cf. (2.13)) at the
Kiefer [174] rate of convergence in (2.23). In view of this, inequalities (3.1) and (3.2) lead to the
following important weighted approximations for αn and un (cf. (2.13) and (2.14) respectively):
on the CsCsHM [74] probability space, as n→ ∞ we have, for any 0 ≤ ν1 < 1/2,

sup
1/(n+1)≤y≤n/(n+1)

|un(y) −Bn(y)|/(y(1 − y))1/2−ν1 = OP (n−ν1) (3.3)
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and for any 0 ≤ ν2 < 1/4,

sup
0≤y≤1

|αn(y) − B̄n(y)|/(y(1 − y))1/2−ν2 = OP (n−ν2) (3.4)

where B̄n(y) = −Bn(y), 1/n ≤ y ≤ 1 − 1/n, n ≥ 2, and zero elsewhere.

The result of (3.3) is Theorem 2.1 of CsCsHM [74], while that of (3.4) is Corollary 4.2.2 of
the same paper. The complete proofs of the inequalities (3.1), (3.2) entail a substantial amount
of technical detail (cf. [74] and CsH [A4]). CsH [80] and, independently, D.M. Mason [197] gave
mathematically equivalent short and simple proofs of (3.3) based directly on the KMT [181]
strong approximation of partial sums as quoted in (2.19). Both papers noted also that the KMT
[181] approximation in their proof of (3.3) can be substituted by the Skorohod [267] embedding,
resulting in having (3.3) for all 0 ≤ ν1 < 1/4 instead of for all 0 ≤ ν1 < 1/2. CsH [80] also gave
a short proof for (3.4). Noting that, for each n ≥ 1,

{En(t), 0 ≤ t < 1} D
= {n−1N(tSn+1), 0 ≤ t < 1}, (3.5)

where N(x) =
∑∞

i=1 11[0,x](Si), with Si as in (2.21), is a Poisson process, their proof of (3.4) is
based on this Poissonization and the CsR [43] strong laws for the increments of a Wiener process
(quoted here in Section 2.6) used in conjunction with a Wiener process strong approximation
to the Poisson process.

In the Addendum of his paper [197] Mason also presents a short proof for (3.4), constructed
in the spirit of its original proof in CsCsHM [74]. The main tool in Mason’s short proof of (3.4)
is an inequality for the oscillation modulus of the uniform empirical process.

CsCsHM [74] also note (cf. their Remark 2.1) that an analogous theory of their weighted
approximations is also feasible via the KMT [181] inequality (2.15). Just as the key results in
the CsCsHM [74] theory are the inequalities (3.1), (3.2), refinements of the CsR [40] inequality
(2.27), the key to the alternative theory need be similar refinements of the KMT [181] inequality
(2.15). D.M. Mason and W.R. van Zwet (Ann. Probab. 15 (1987), 871–884) succeeded in doing
this, and thus have constructed a probability space dual to that of CsCsHM [74] as in (3.1) and
(3.2) on which (3.3) holds for all 0 ≤ ν1 < 1/4 and (3.4) holds for all 0 ≤ ν2 < 1/2, i.e., reversing
the bounds on ν1 and ν2 in view of the Kiefer [174] result (2.23).

Extensions of the classical Erdős–Rényi–Kolmogorov–Petrovski tests for upper
and lower class functions of Brownian motion. Just like the papers that we have discussed
so far on strong and weak approximations of empirical, quantile and partial sums processes
have led to studying path properties of the approximating Gaussian processes, paper [74] has
played a similar role as well (cf. also [83]). In particular, when determining the optimal class
of weight functions for their weighted approximations, CsCsHM [74] build their criteria (cf.
Lemmas 3.1, 3.2, and Remarks 5.1, 5.2 in [192] in [V2]) on variants of the classical Erdős–Feller–
Kolmogorov–Petrovski [EFKP] tests for upper and lower class functions of Brownian motion
(cf. Itô and McKean [156], Petrovski [214], Erdős [115], Feller [119], [120]). Moreover, proof of
CONJECTURE of [74] in [127] with Q.-M. Shao, B. Szyszkowicz has led to an extension of
integral criteria for Khinchine’s local, as well as global, LIL for Brownian motion. Consequently,
the authors of [127] conjectured that similar extensions of the classical EFKP tests for upper
and lower class functions of Brownian motion should be also possible. This, in turn, was proved
to be true by Keprta [165], [166]. For details on these matters we refer to Section 5.1 of [189].
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Theory of weighted approximations extending that of weak convergence in weighted
sup-norm metrics. The weighted approximations (3.3), (3.4) have found numerous and wide
ranging applications in probability theory and statistics. To begin with, they provide simple
proofs for the important Rényi [224] (cf. also [9] and Csáki [60], [63]), Chibisov [52], O’Reilly
[205], Eicker [108] and Jaeschke [157] theorems on the weak convergence and limiting distribu-
tion of weighted uniform empirical and quantile processes. Moreover, the (3.3) and (3.4) based
theory of weighted approximations goes beyond that of weak convergence in weighted sup-norm
metrics in that it also yields examples of functionals in sup-norm converging in distribution (cf.,
e.g., Theorem 4.2.3 of CsCsHM [74]) when the distribution law of the limiting random function
is not necessarily a Radon measure. This type of convergence in distribution cannot be ar-
gued via the usual approach of demonstrating convergence of finite dimensional distributions in
combination with proving tightness with respect to a weighted sup-norm topology. For further
such examples we refer to [171] with R. Norvaǐsa and B. Szyszkowicz and, in the context of the
domain of attraction of the normal law, to Corollary 3.4, Remark 3.7, Corollary 5.2 and Remark
5.2 of [192] in [V2].

Concerning invariance principles as in [171] with Norvaǐsa and Szyszkowicz, let IBw be a non-
separable Banach space of real valued functions endowed with a weighted sup-norm. In [171] the
authors consider partial sum processes as random functions with values in IBw. Their main
result deals with convergence of distributions of certain functionals in the case when the Wiener
measure is not necessarily a Radon measure on IBw, and hence the usual approach of proving
tightness with respect to a weighted sup–norm topology is not applicable. Just like in CsH [105]
and Szyszkowicz [278], [280], this difficulty is overcome by establishing this kind of convergence
in distribution via strong approximation methods. Moreover, in [171], the corresponding results
of CsH [105] and Szyszkowicz [278], [280] are extended to arbitrary weight functions. It is also
shown in [171] that the above notion of convergence in IBw to a not necessarily Radon measure
is equivalent to having a bounded central limit theorem.

In view of the phenomena of functionals in sup-norm converging in distribution when the
distribution law of the limiting random function is not necessarily a Radon measure in weighted
sup-norm topology, it became evident that, in addition to weak convergence of random functions
with values in metric spaces, convergence in distribution of their functionals in terms of various
weighted metrics should be studied on their own for the sake of applications and for gaining
further insight into these matters. The papers [100], [117] with Horváth deal with weighted
Lp functionals of empirical and quantile processes. Extending the studies of [100], in [117]
the authors establish limit theorems for the distributions in weighted Lp norms of the quantile
processes γn and ρn as in (2.35) and (2.44) respectively. Under appropriate conditions, the
limiting random variables are represented as integrals of weighted Wiener and exponential partial
sums processes. In [135] with Horváth and Q.-M. Shao the authors find a necessary and sufficient
condition for the weak convergence of the uniform empirical and quantile processes to a Brownian
bridge in weighted Lp–distances. Unlike in the case of weighted sup-norm topologies as in [74], in
this context the corresponding weighted Lp–functionals of these processes are shown to converge
in distribution under the same condition to the corresponding functionals of a Brownian bridge.
The same is true for partial sums processes in this regard (cf. Szyszkowicz [279]). The proofs are
based on dichotomy theorems for integrals of stochastic processes (cf., e.g., Lemma 4.1 in [192]
in [V2]). For a review of weighted approximations in probability of partial sums and empirical
processes we refer to [137]. For a view of, and necessary and sufficient conditions for, invariance
principles in probability for empirical and partial sums processes with sample paths in Banach
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function spaces, we refer to [146] and [154] with Rimas Norvaǐsa. In [166] with Norvaǐsa,
the convergence in distribution of standardized sequential empirical processes is related to the
extreme value distribution of a two-parameter Ornstein-Uhlenbeck process.

A weighted invariance principle is described in [194] with Norvaǐsa for non-separable Banach
space-valued functions via asymptotic behaviour of a weighted Wiener process. It is proved that,
unlike the usual weak invariance principle (cf. Theorem 2.3 of [171]), this weighted variant cannot
be characterized via validity of a central limit theorem in a Banach space. A strong invariance
principle is introduced in this context and used to prove the desired weighted weak invariance
principle. The result then is applied to empirical processes.

On the impact of weighted approximations. Fashioned after [135], paper [161] with
Horváth and Q.-M. Shao studies almost sure weighted summability of partial sums of independent
random variables. Some of these results are also reviewed in [137]. While at summability,
we mention CsH [96], where a Marcinkiewicz-Zygmund type strong law of large numbers is
proved for random walk summation. This summation method was introduced by N.H. Bingham
(cf. References in [96]), who with Makoto Maejima [28] proved respective analogues of the
Kolmogorov law of large numbers and the law of the iterated logarithm.

Further to empiricals and quantiles, for strong limit theorems for weighted quantile processes
we refer to J.H.J. Einmahl and D.M. Mason [109]. The paper CsH [99] investigates the weak
limits in suitable function spaces of the à la Gnedenko [134] normalized quantile function of the
empirical distribution function on the line, and the weak limit of the consequentially normalized
empirical distribution function with a transformed argument. The first one of these results can
be interpreted as a functional version of the classical extreme value trio of B.V. Gnedenko [134].

Paper [74] has also led to CsH [107] solving the long standing problem of proving central
limit theorems for kernel estimators of smooth density functions in Lp, 1 ≤ p < ∞. This was
also achieved under random censorship in [126] with Edit Gombay and Horváth. The results of
[107] are also presented in CsH [98]. For a review of further central limit theorems in functional
estimation we refer to Alain Berlinet [23].

Wide ranging further applications of the weighted approximations of paper [74] can be found
in CsH [128], the CsH [A4] book, and the proceedings volumes edited by M. Hahn, D.M. Mason
and D. Weiner [140], and B. Szyszkowicz [V1]. For a special tribute to [74] and appreciation of
the formulations (3.3), (3.4) we refer to Galen R. Shorack [261] in the latter volume [V1]. For
further developments along these lines we refer to D.M. Mason [198].

We note in passing that the CsCsHM [75] paper, right after, and very much in the spirit
of [74], establishes general invariance principles for integral functions of the empirical process.
Based on the latter invariance principles, paper [75] initiates the study of the criteria for a
distribution to belong to the domain of attraction of the normal and stable laws with index
0 < α < 2 in terms of the tail behaviour of the underlying quantile function. This in turn
has led to studies on asymptotic representations of self-normalized sums in these domains of
attraction (cf., e.g., CsH [97], S. Csörgő [76]). The general invariance principles of [75] for
integral functions of the empirical process have also evolved into an approach to domains of
attraction based on quantiles and Feller [121] (cf. S. Csörgő, E. Haeusler and D.M. Mason [79]),
and led to significant advances in limit theorems for sums of order statistics as well (cf., e.g.,
S. Csörgő, E. Haeusler and D.M. Mason [80]).

The works in M. Csörgő’s list of publications that have figured in the already frequently
mentioned CsH [A4] 1993 monograph are books [A1], [A2], [A3], papers [9], [27], [28], [29], [32],
[40], [62], [64], [72] of the 19 year period 1967–1985, and [73], [74], [76], [80], [81], [84], [88],
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[90], [92], [99], [100], [104], [113], [117], [120], [121], [127], [128], [135], [142] of the 9 year
period 1986–1994. Many of these have already been viewed before. Just reading the titles of
the latter period of 1986–1994 gives a rough idea of the scope of [A4].

Weighted approximations–change-point analysis: an interplay. In order to illustrate
further developments that have become feasible in view of weighted approximations, adapting
style of references to this volume, we quote from the Preface of the 1997 CsH [A5] monograph:

While working on our previous book, Weighted Approximations in Probability and
Statistics, Wiley 1993, we were tempted to continue with adding further chapters
on studying some selected areas of the mathematical and experimental sciences in
which the asymptotic behaviour of functionals of various data-based processes in
weighted metrics would appear to play a natural role in resolving certain problems
of statistical inference. The complex area of change-point analysis of chronologically
ordered observations was one of the topics we had had in mind to write a chapter on.
However, due to some imminent enough deadlines and the prospect of a mushrooming
number of additional pages, we soon gave up the idea of adding further chapters. At
the same time we were kindly encouraged by David Kendall that we should rather
continue with writing another book instead, on change-point analysis. We are glad
to take this opportunity to thank him for his trust and foresighted advice to us, and
hope only that we will not have disappointed him with our endeavour to do just
that.

The Kendall and Kendall paper [163] played a seminal role in triggering our interest
in studying change-point problems in general, and via weighted approximations (cf.
Csörgő and Horváth [85]) in particular. Indeed, the latter approach, that in this
book is mainly based on some fundamental results of the Hungarian construction
school, constitutes the essential backbone of many, if not most, of the proofs. We
build directly on our 1993 book, Weighted Approximations in probability and Statis-
tics, while aiming at a fairly thorough survey and development of parametric and
nonparametric methods for change- point problems.

The CsH [85] paper is a first excursion into change-point analysis. It has, in particular, also
led to an extensive study of Kendall–Kendall pontograms. For details and further references,
we refer to Section 2.5 and pp. 195-6 of CsH [A4], Szyszkowicz [277], and to the collection
of extended abstracts in [B2]. The paper CsH [129] has, in turn, led to studying two-time
parameter pontograms in [147] with Szyszkowicz.

In connection with studying change-point problems in general, in addition to the CsH [A5]
monograph, we mention again the collection of extended abstracts of [B2] that is also concerned
with empirical reliability (cf. also the papers [309], [311], and their references, in [V1]). Questions
concerning a possible change in the mean of chronologically ordered observations posed the
desirability of weighted approximations for partial sums processes in a most natural way, under
optimal moment and weight function conditions (cf. [105], [278], [280] and [171]). Similarly, a
possible change in the distribution of such data naturally led to considering sequential empirical
processes that are to be weighted via weight functions of their sequential time parameter in a
best possible way (cf. [101], [147], [165], [281]).

The works in M. Csörgő’s list of publications that are made use of in the CsH [A5] monograph
are books [A1], A2], [A3], [A4], papers [11], [22], [29], [40], [42], [43] of the 12 year period 1968–

37



1979, and [74], [85], [92], [93], [94], [101], [105], [106], [127], [135], [147], [148], [155], [165],
[171] of the 14 year period 1986–1999. The doctoral theses [152], [278], [306], [59], [165], [48],
[203], [217] were also inspired by the milieu of the latter period. The CsH [105], [106] papers
deserve to be singled out in this regard. For instance, the therein presented U-statistics based
processes for detecting a change in the distribution of chronologically ordered observations have
become seminal for further developments along these lines (cf., e.g., Chapter 2 of [A5] and its
references, and Markus Orasch [204] in [V2]).

For recent trends and advances on change-point analysis we refer to the four papers of Part
5 in [V2], and to [175]. As an alternative to the sequential empirical process approach (cf.
[281]), paper [175] with Szyszkowicz introduces the notion of sequential quantile process for
use in detecting a change in distribution of chronologically ordered independent observations.
Weighted quantile change-point processes are then studied in this context via approximations in
weighted metrics along the lines of [165].

Quantile processes, stationary mixing and associated sequences, total time on
test processes, empirical Lorenz and Goldie curves. The topics of the monographs [A1],
[A2], [A3] continued to be inspiring and were frequently revisited in the years after. We are to
view some of these works now.

Initiated by Hao Yu’s 1993 thesis [306], quantile processes based on stationary sequences of
random variables are studied in [159] with H. Yu via similarly based Bahadur-Kiefer processes
(cf. (2.22)) in properly weighted sup-norm metrics. Thus a general comprehensive approach is
provided for obtaining asymptotic results in weighted sup-norm metrics for uniform quantile
processes of stationary sequences. Consequently, making use of results of H. Yu [307], and Q.–
M. Shao and H. Yu [257], the authors establish weak convergence for weighted uniform quantile
processes of stationary mixing and associated sequences. Next, studying the sup-norm deviation
of a general quantile process ρn (cf. (2.44)) from its corresponding uniform quantile process (cf.
(2.42)) à la (2.53)–(2.56) in this context, it is concluded that this weighted sup-norm distance
converges in probability to zero under the so-called Csörgő–Révész conditions as in (i), (ii),
(iii) (2.47) and (iv) or (v) of (2.54). This, in turn, enables the authors of [159] to obtain weak
convergence in weighted sup-norm metrics for general quantile processes (cf. (2.44)) of stationary
mixing and associated sequences. In a similar vein, extending corresponding results of [A3] in the
i.i.d. case, paper [163] with H. Yu establishes a nonparametric large sample estimation theory
for total time on test processes (cf. (3.12), (3.13) for definitions) for stationary sequences of
positively associated observations, as well as for those of ρ– and α–mixing sequences of random
variables. In a similar fashion, extending corresponding i.i.d. based results of [A3], paper [174]
with Hao Yu constructs a weak approximation theory for empirical Lorenz curves and their
Goldie [132] inverses based on a stationary sequence of random variables. These approximations
are also studied in terms of stationary sequences of α–mixing random variables.

The Lorenz curve corresponding to a non-negative random variable X with a finite and
positive mean µ = EX and distribution function F , denoted by LF , is defined (cf. Gastwirth
[128]) by the formula

LF (t) :=
1

µ

∫ t

0
F−1(s)ds, 0 ≤ t ≤ 1, (3.6)

where F−1 denotes the left continuous inverse of F (cf. (2.31)). In econometrics it is customary
to interpret LF (t) as the proportion of total amount of “wealth” that is owned by the least
fortunate t × 100 percent of a population. In various contexts Lorenz curves have now been
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in use for just about 100 years (cf. M.C. Lorenz [190], and paper [157] with Ričardas Zitikis
for further references). Paper [160] with Zitikis establishes asymptotic confidence bands for
Lorenz and Goldie curves, whereas [169] with Gastwirth and Zitikis studies such bands for the
Lorenz and Bonferroni curves. In their survey of convex rearrangements of random elements,
Youri Davydov and Ričardas Zitikis [86] in [V2] discuss relationships of convexifications with
generalized Lorenz curves as well. In particular, related results of [A2], [A3], [87], [157], [169],
[174] are reviewed in the latter paper [86] in the context of convex rearrangements of random
elements.

Mean and percentile residual lifetime processes. G.L. Yang [304], and W.J. Hall
and J.A. Wellner in [B1] initiated investigations of the asymptotic uniform behaviour of mean
residual life (MRL) processes. They obtained results holding true over fixed and expanding
compact subintervals of [0,∞) (cf. also [A3]). In [158] with Zitikis MRL processes are studied
over the whole positive half-line [0,∞). Classes of weight functions are introduced that enable
the authors to establish (a) strong uniform–over–[0,∞) consistency and (b) weak uniform–over–
[0,∞) approximation of MRL processes. The latter in turn leads to constructions of asymptotic
confidence bands for an unknown MRL function MF , which at (age) x ≥ 0 is defined by

MF (x) := E(X − x|X > x), x ≥ 0, (3.7)

where the unknown life distribution function of the nonnegative random variableX is assumed to
be continuous with a finite mean EX . The width of the obtained confidence bands is regulated by
weight functions depending on information that may be available on the underlying distribution
function.

A parallel notion to the MRL function is the median residual lifetime function R(1/2)(t), t ≥
0. Schmittlein and Morrison [249] explain potential advantages of using the latter instead of
MRL. More generally, let F be a life distribution function with the corresponding quantile
function Q = F−1, defined as in (2.31). With 0 < p < 1 fixed, consider the (1 − p)–percentile
residual lifetime (PRL) function at t > 0

R(p)(t) = Q(1 − p(1− F (t))) − t, (3.8)

originally introduced by Haines and Singpurwalla [141], and interpreted as the (1−p)–percentile
additional time to failure, given no failure by time t > 0. Paper [91] with Sándor Csörgő initiates
a nonparametric large sample theory for PRL processes. They introduce the sample analogue

R
(p)
n (t) of R(p)(t), the sample (1 − p)–percentile residual life at t > 0, as

R(p)
n (t) = Qn(1 − p(1− Fn(t)))− t, 0 < p < 1, (3.9)

where Qn and Fn are the sample quantile and empirical distribution functions as in (2.34) and

(2.28) respectively, and define the empirical (1− p)–percentile life process r(p)n (t), à la (2.44), by

r(p)n (t) = n1/2f(Q(1 − p(1 − F (t))))(R(p)
n (t) −R(p)(t)), (3.10)

where it is assumed that F has density function f = F ′ that is positive over the support (0, b) of

F with b as in (i) (2.47). Paper [91] presents an asymptotic distribution theory for r
(p)
n (t) under

conditions that are adapted versions of those of CsR [40] (cf. (i)–(iii) (2.47) and (iv), (v) (2.54))
for the general quantile process, resulting in asymptotically distribution-free confidence intervals
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and confidence bands for the percentile residual lifetime R(p)(t) of (3.8). The latter parallels those
of (2.45) for the quantile function Q as in (2.31). Paper [82] concludes asymptotically (1 − α)
size bands for R(p)(t) based on bootstrapped estimates of R

(p)
n (t) (cf. (3.9)). PRL processes are

studied under random censorship in [55]. Further to survival analysis, we refer to Ĺıdia Rejtő
and G. Tusnády [222], and H. Yu [309], both in [V1].

Revisiting Lorenz curves and total time on test processes via the general Vervaat
process. Paper [162] with Zitikis re-examines the topic of [157]. Assumi ng the finiteness of
the second moment only, it is shown in [162] that LIL for Lorenz curves holds true provided that
the underlying distribution function F and its inverse Q are continuous. Paper [157] achieves
the same goal with E|X |2+ǫ <∞ for some ǫ > 0, under the same conditions for F and Q. Earlier
LIL results for Lorenz curves also assumed the absolute continuity of F and further assumptions
on f := F ′ as well, together with more than two finite moments (cf. Rao and Zhao [221] and its
predecessor [A3, Corollary 11.4, p. 96]). In [157] and [162] conditions of Rao and Zhao [221]
were relaxed via introducing, as well as noticing and exploiting the crucial role of, the general
Vervaat process:

V Fn (t) :=

∫ t

0
(F−1

n (s)− F−1(s))ds+

∫ F−1(t)

0
(Fn(x)− F (x))dx, 0 ≤ t ≤ 1, (3.11)

where Fn, F
−1
n and F−1 are as in (2.28), (2.34) and (2.31), respectively. Revisiting the investi-

gations of Section 7.4 of [A2] and Section 6 of [A3] on the uniform rate of convergence to zero
of the total time of test (TTT) process H−1

n −H−1
F , where

H−1
F (t) :=

∫ F−1(t)

0
(1 − F (x))dx, 0 ≤ t ≤ 1, (3.12)

is the (theoretical) TTT–curve, and

H−1
n (t) :=

∫ F−1
n (t)

0
(1− Fn(x))dx, 0 ≤ t ≤ 1, (3.13)

is its empirical counterpart, the general Vervaat process V Fn played an equally crucial role in
studying the TTT process in [168] with Zitikis. For more historical and mathematical details
on the Vervaat process we refer to Zitikis [311], and to Wim Vervaat [291], [292], who introduced
and studied V Fn for [0, 1]–uniform distribution (cf. (3.20) and (3.21)).

Bahadur-Kiefer, Vervaat and Vervaat-error processes in the i.i.d. and long range
dependent cases. The fundamental role that was played by the general Vervaat process V Fn
in the papers [157], [162] and [168] has in turn led to studying Vervaat and Vervaat–error
processes on their own in [172], [184], [185], [188]. We are to have a glimpse at these papers
now. For further details we refer to Csáki et al. [69] in [V2].

With Rn, the (uniform) Bahadur–Kiefer process as in (2.22), we have (cf. Kiefer [174],
Shorack [260], and Deheuvels and Mason [96])

lim
n→∞

n1/4(log n)−1/2 ‖Rn‖
(‖αn‖)1/2

= 1 a.s., (3.14)

where ‖f‖ := sup0≤t≤1 |f(t)| denotes the uniform sup-norm of f and αn is the uniform empirical
process as in (2.13). Now (3.14) in combination with the weak convergence of αn to a Brownian
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bridge B yields

n1/4(log n)−1/2‖Fn‖ D→ (‖B‖)1/2, n→ ∞, (3.15)

a result that was first concluded by Kiefer [174] from a convergence in probability version of
(3.14).

The asymptotic behaviour of Rn in Lp norms was in turn established in [195] with Zhan Shi
(cf. also [183]) as follows: For any p ∈ [2,∞), we have

lim
n→∞

n1/4
||Rn||p

(||αn||p/2)1/2
= c0(p) a.s., (3.16)

where

c0(p) := (E|N |p)1/p =
√

2

(

1√
π
Γ

(

p+ 1

2

))1/p

(3.17)

with Γ standing for the Gamma function, N for a standard normal random variable, and ||f ||p :=
(
∫ 1
0 |f(t)|pdt

)1/p
, the Lp norm of f .

Now (3.16) and the weak convergence of αn to a Brownian bridge B yield that, for p ∈ [2,∞),

N1/4||Rn||p D→ c0(p)(||B||p/2)1/2, n→ ∞. (3.18)

On the other hand, Vervaat [291], [292] concluded: The statement

anRn
D→ Y, n→ ∞, (3.19)

cannot hold true in the space D[0, 1] (endowed with the Skorohod topology) for any sequence {an}
of positive real numbers and any non-degenerate element Y of D[0, 1].

Vervaat’s [291], [292] proof of this conclusion is based, in a most crucial and elegant way, on
the following integrated Bahadur–Kiefer process

In(t) :=

∫ t

0
Rn(s)ds, 0 ≤ t ≤ 1. (3.20)

Concerning the latter, he established the weak convergence of

Vn(t) := 2n1/2In(t) (3.21)

to B2, the square of a Brownian bridge (for a discussion and related details we refer to [172],
184]) by showing that

lim
n→∞

||Vn − α2n|| = 0 in probability. (3.22)

Therefore, in the space C[0, 1] (endowed with the uniform topology)

Vn(·) D→ B2(·), n→ ∞. (3.23)

As a consequence of (3.23), Vervaat [291], [292] concluded the impossibility of having (3.19)
on account of a Brownian bridge B being almost surely nondifferentiable (cf., e.g., (2.75)).
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In retrospect, we note that the impossibility of having (3.19) can also be concluded from a
combination of (3.15) and (3.18), or historically more appropriately via (3.15) combined with
(cf. Kiefer [172])

n1/4Rn(t)
D→ (t(1 − t))1/4 N (| ˜N |)1/2, (3.24)

for every fixed t ∈ (0, t), where N and ˜N are independent standard normal random variables
(cf. (2.81), (2.82) for the same phenomenon, and Sections 2 and 3 of Csáki et al. [69] in [V2] for
insights into this phenomenon).

As for terminologies, the process Vn of (3.21) is called the uniform Vervaat process. The
latter coincides with the integrated empirical difference process in Shorack and Wellner [263,
p. 594]. For further references and elaboration on these terminologies we refer to Section 1 of
Zitikis [311].

Bahadur [14] introduced Rn as the remainder term in the representation

un = −αn +Rn (3.25)

quantile process un in terms of the empirical process αn. In fact, originally, Bahadur [14] studied
the latter representation for ρn(y) as in (2.44) as a stochastic process in n ∈ IN for y ∈ (0, 1)
fixed. For a summary along these lines, and for an extension of Kiefer’s asymptotic theory of the
uniform Bahadur–Kiefer process, we refer again to Chapter 6 of [A2] and that of [A4], papers
[40], [64], [167], and [188], together with our comments on this matter in the second paragraph
that follows right after (2.71) in our exposé.

Back to (3.25), from (3.14), (3.15), (3.24), and from (3.16), (3.18), we see that the remainder
term Rn, i.e., the Bahadur–Kiefer process, is asymptotically smaller than the main term αn,
i.e., the empirical process, in both the sup-norm and Lp topologies.

In a similar vein, one can think of the process

V̂n(t) := Vn(t) − α2n(t), 0 ≤ t ≤ 1, (3.26)

that appears in (3.22) as the remainder term V̂n in the following representation

Vn = α2n + V̂n (3.27)

of the uniform Vervaat process Vn in terms of the square of the empirical process. It is well
known (cf. Zitikis [311] in [V1] for details and references) that the remainder term V̂n in (3.27)
is asymptotically smaller than the main term α2n. Thus, just like in the case of Rn (cf., e.g.,
(3.14), (3.16), (3.24)), one may like to know how small the remainder term V̂n is. The latter
remainder term V̂n is called the Vervaat error process in [185], as well as in [172], following
the terminology of a 1999 preliminary version of [185]. In view of (3.14), (3.16), (3.24), one
suspects that there should be substantial differences between the asymptotic pointwise, sup- and
Lp–norms behaviour of the process V̂n. Indeed, inspired by [195] with Zhan Shi, in [184] with
Zitikis the following strong convergence result is established for ||V̂n||p: For any p ∈ [1,∞)

lim
n→∞

n1/4
‖V̂n‖p

(‖αn‖3p/2)3/2
=

1√
3
c0(p) a.s. (3.28)

where c0(p) is defined in (3.17).
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For a comparison of this result to that of (3.16), as well as for that of their consequences, we
refer to [184], where it is also conjectured that in sup-norm the analogue statement of (3.28)
should be of the following form:

lim
n→∞

bnn
1/4 ‖V̂n‖

‖αn‖3/2
= c a.s., (3.29)

where bn is a slowly varying function converging to zero and c is a positive constant. The latter
conjecture was proved to be true with bn = (log n)−1/2 and c = (4/3)1/2 in Csáki et al. [185],
together with asymptotic pointwise results for V̂n as follows: For every fixed t ∈ (0, 1)

n1/4V̂n(t)
D→ (4/3)1/2(t(1− t))3/4 N (| ˜N |)3/2, n→ ∞, (3.30)

lim sup
n→∞

n1/4|V̂n(t)|
(log log n)5/4

= (t(1 − t))3/4 211/431/4

55/4
a.s., (3.31)

where N and ˜N are independent standard normal random variables. Also,

lim
n→∞

n1/4(log n)−1/2 ‖V̂n‖
(‖αn‖)3/2

= (4/3)1/2 a.s. (3.32)

As a consequence of this theorem, as well as that of (3.28) combined with (3.32), one arrives
at confirming Conjecture 2.1 of [184] as follows: The statement

anV̂n
D→ Y, n→ ∞, (3.33)

cannot hold true in the space D[0, 1] (endowed with the Skorohod topology) for any sequence of
positive real numbers and for any nondegene rate random element Y of the space D[0, 1].

We mention also the following immediate direct consequence of (3.32):

n1/4(log n)−1/2‖Vn‖ D→ (4/3)1/2||B||3/2, n→ ∞, (3.34)

where B is a standard Brownian bridge.
For further consequences of (3.32) and their discussion, we refer to [185] and Csáki et al.

[69] in [V2]. It is of interest to view (3.14) and (3.32) together. One would hope to see one day
an Lp–norm version of (3.32) for V̂n that would rhyme with (3.16) for Rn. The statement of
(3.30) is to be compared to (3.24), while that of (3.31) to that of another result of Kiefer [172]
for Rn, which reads as follows: For every fixed t ∈ (0, 1)

lim sup
n→∞

n1/4|R̂n(t)|
(log log n)3/4

= (t(1− t))1/4 2
5/4

33/4
a.s. (3.35)

As noted earlier, the general Vervaat process V Fn (cf. (3.11)) first appeared and was put to
good use in [157]. For a detailed survey on this subject we refer to Zitikis [311]. For related
though rather different limit theorems for the general Vervaat process V Fn , we refer to [188]
with Zitikis. It is desirable to generalize the results of (3.30)–(3.32) in such a way that they
would cover general forms of the Vervaat process as well. For a recent review of Vervaat and the
Vervaat–error processes we refer to [172] with Zitikis. The Csáki et al. paper [185] is dedicated
to the memory of Arthur Hing-Chiu Chan (1946–1999), Ph.D. 1977, Carleton University.
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In [199] with Csáki, Rychlik and Steinebach the authors study the asymptotic behaviour
of stochastic processes that are generated by sums of partial sums of i.i.d. random variables
and their renewals along the lines of [185] (cf. (3.30)–(3.32)). It is concluded that, just like
the Bahadur-Kiefer process Rn (cf. (2.22)), the sums of these partial sums and their renewals
processes cannot converge weakly to any nondegenerate random element of the space D[0, 1].
On the other hand, their properly normalized integrals as Vervaat–type stochastic processes
are shown to converge weakly to a squared Wiener process. The asymptotic behaviour of the
deviations of these processes, i.e., that of their Vervaat–error type processes, is also dealt with
in [199].

Paper [198] with Barbara Szyszkowicz and Lihong Wang establishes strong invariance prin-
ciples for Bahadur–Kiefer processes of long range dependent sequences as in H. Dehling and
M.S. Taqu [98]. Moreover, the strong and weak asymptotic behaviour of the integrated Vervaat
versions of these processes, as well as that of their deviations from their limits, i.e., that of their
Vervaat–error type processes, is also studied in [198]. As we have just seen, the Bahadur–Kiefer
and the Vervaat error processes cannot converge weakly in the i.i.d. case (cf. (3.19) and (3.33),
respectively). In contrast to this, in [198] the authors conclude that the Bahadur–Kiefer and
Vervaat–error processes for long range dependent sequences as in [98] do converge weakly to a
Dehling–Taqqu type limit process (cf. H. Dehling and M.S. Taqqu [98]).

Spacings, percentile-percentile and quantile rank processes, Chernoff-Savage-
type theorems. Statistics based on spacings have received a great deal of attention in the
literature (cf., e.g., Pyke [218], [219], [49], Holst and J.S. Rao [147], Chapter 7 of [A2], Aly [9],
Beirlant [18], Aly, Beirlant and Horváth [10], [79] with Horváth, and references in these works).
Paper [79] gives a complete characterization of the asymptotic distribution of the supremum of
weighted spacings.

Let X1, . . . ,Xm (m ≥ 1) and Y1, . . . , Yn (n ≥ 1) be two independent random samples on the
random variablesX and Y with respective continuous distribution functions F and G, and let Fn
and Gn denote the corresponding empirical distribution functions. Put N = m+n, λN = m/N ,
H = λNF + (1 − λN )G, HN = λNFm + (1 − λN )Gn. Let F−1, F−1

m , etc., denote the inverse
functions of F, Fm, etc. Paper [86] with Aly and Horváth studies the following processes: the
empirical P–P (procentile–procentile) process

ℓN (y) = N1/2(GnF
−1
m (y)−GF−1(y)), 0 ≤ y ≤ 1, (3.36)

the quantile rank process

dN (y) = N1/2(DN (y) −D(y)), 0 ≤ y ≤ 1, (3.37)

where DN (y) = HNF
−1
m (y), D(y) = HF−1(y), and the empirical rank process

rn(y) = N1/2(D−1
N (y)−D−1(y)), 0 ≤ y ≤ 1. (3.38)

Weak convergence of these processes to appropriate Gaussian processes is established under
certain regularity conditions. Let Rk stand for the rank of the kth order statistic in the pooled
sample. Then nGn(Xk,n) = Rk − k, k = 1, . . . , m. This relationship shows that ranks provide
an alternative way of looking at P–P plots. It was the latter connection and Parzen’s [210]
inspiring expository paper on two sample statistics that have led us to also study rank plots
and rank processes in [86]. Pyke and Shorack [220] considered the process N1/2(FmH

−1
N (y) −
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FH−1(y)), 0 ≤ y ≤ 1, which is asymptotically equivalent to rn of (3.38). They proved its weak
convergence in weighted metrics to a Gaussian process. The approach of [86] to rank processes à
la rn of (3.38) is more direct and lends itself to bootstrapping immediately via Section 17 of [A3].
The main tools are weighted approximations of the uniform empirical and quantile processes à
la Pyke and Shorack [220] and [74]. The obtained results in weighted metrics are directly used
to prove Chernoff-Savage-type theorems (H. Chernoff and I.R. Savage [51]).

Bootstrapped empiricals, estimating the tail index of distribution and the adjust-
ment coefficient in risk theory via intermediate order statistics. Having just mentioned
bootstrapping rn of (3.38) via Section 17 of [A3], we note that the O(n−1/4(log n)3/4 rate of ap-
proximation of the bootstrapped empirical process as in [A3] is improved in [177] with Horváth
and Kokoszka, where a KMT [181] type approximation (cf. (2.15)) is obtained with the same
rate of coupling for the bootstrapped empirical process. This construction in turn was shown
to be best possible by Horváth and Steinebach [149]. The proof of the new approximation is
based on the Poisson approximation of the uniform empirical distribution function by Bretag-
nolle and Massart [36] (cf. also Theorem 3.1.3 in [A4, p. 139]) and the Gaussian approximation
for randomly stopped sums of paper [90] with Deheuvels and Horváth (cf. also [81] and [92]
with Horváth and Steinebach, and Chapter 2 of [A4]).

Somewhat in isolation, paper [89] with Horváth and Révész deals with the elusive problem
of estimating the tail index of a distribution. A straightforward (naive) estimator is proposed,
whose properties are examined for consistency and asymptotic normality. Its various rates of
convergence are explored under different conditions. It is seen to compare well with other tail
index estimators found in the literature. Using the naive estimator, optimality is explored. It
is concluded that, while optimal rates of convergence do exist under various conditions, the
notion of an optimal sequence for this problem is bound to run into unsurmountable difficulties.
The same is shown to be true for the more complex, previously introduced estimators. For
a comprehensive review of this area, we refer to Sándor Csörgő and László Viharos [81] with
138 reference works in [V1]. In connection with [89] they note that, without investigating it,
Gawronski and Stadtmüller [129] also proposed the same naive estimator, while A.H. Welsh
[299] studied essentially the same estimator in the context of P. Hall’s paper [143].

In a somewhat similar vein to that of [89], in [121] with Josef Steinebach a sequence of
intermediate order statistics is proposed to estimate the adjustment coefficient in risk theory.
The underlying random variables may be viewed as maximum waiting times in busy cycles of
GI/G/1 queuing models under light traffic. The estimates are shown to be strongly consistent
and their rates of convergence is also studied. There are also central limit theorems available for
intermediate order statistics (cf. Leadbetter et al. [185, Chapter 2.7] and Cooil [58]). The latter
were extended in terms of weak convergence in weighted metrics in CsH [84].

Randomly stopped sums, Rayleigh random flight, stochastic analysis, geometric
stochastic processes, Black-Scholes equations. The strong approximation theory of ran-
domly stopped sums of i.i.d.r.v.’s as in [90] with Deheuvels and Horváth is applied in the same
paper to studying Kingman’s GI/G/1 queues in heavy traffic (cf. J.F.C. Kingman [176], [177]).
For earlier results on the accuracy of Kingman’s approximation we refer to Rosenkrantz [244]
and Kennedy [164]. The problem of providing estimates for the probability of ruin starting with
a large initial reserve as in Horváth and Willekens [150] is also revisited in [90], improving on
results of the latter paper. For more details and further references on the just mentioned topics
we refer to Sections 2.4.1–2.4.3 of [A4]. In connection with renewal counting and first passage
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time processes we call attent ion to Allan Gut and Josef Steinebach [138] in [V2], studying these
topics in terms of complete convergence, following their survey of similar asymptotics for partial
sums. Sándor Csörgő [78] in [V2] determines the complete convergence of bootstrap means. We
note in passing that the notion of complete convergence has also played a significant role in
proving random limit theorems via strong invariance principles (cf. Chapter 7 of CsR [A1]).

Further to randomly stopped sums, let ξ, ξ1, ξ2, . . . be i.i.d.r.v.’s with Eξ > 0 and 0 < Varξ <
∞. Define

A(t) = inf{k :

k
∑

i=1

ξi > t} and Y (t) =

A(t)−1
∑

i=1

(−1)i+1ξi, t ≥ 0. (3.39)

Assuming that ξ is an exponential r.v., Y (t) is called the transport process or Rayleigh random
flight. With the help of [92], CsH [104] obtain a rate of approximation of Y (t) by a Wiener
process. The latter rate of approximation is the same as the optimal rate of approximation in
[90], where, unlike in [104], the summands and the stopping processes are assumed to be inde-
pendent. This approximation is applied to the E. Wong and M. Zakai [302], [303] approximation
of stochastic integrals. For further details and references on these approximations we refer to
Luis G. Gorostiza’s review of [104] (cf. MR 89k:60073) and to Section 2.4.4 of [A4], where
ξ above is assumed to have a finite moment generating function in a neighbourhood of zero,
instead of being exponentially distributed as in [104].

The survey paper [173] presents the elements of mathematics that are relevant to financial
modeling in a historical context. Using results of Tamás Szabados [275], [276], it gives a self-
contained background on stochastic analysis (Itô calculus included), and also deals with the
problem of fair pricing of financial derivatives and their related Black-Scholes formulas. The
results of the paper [176] are also previewed in this context. For a glimpse of the latter paper
we refer to Csáki et al. [69] in [V2].

Weak and strong approximations for logarithmic averages. The discovery of the
pointwise central limit theorem (cf. G.A. Brosamler [38], P. Schatte [248]) created a considerable
interest in logarithmic limit theorems. CsH [132] obtain weak and strong Gaussian approxima-
tions for logarithmic averages of indicators of normalized partial sums of i.i.d. random variables
with EX = 0, EX2 = 1, EX2(log |X|)2+δ <∞ for some δ > 0. The proofs are based on invari-
ance principles for integrals of an Ornstein–Uhlenbeck process and on strong approximations of
normalized partial sums by Ornstein–Uhlenbeck processes. A. Weigl [297] proved the first CLT
and LIL in this context for a symmetric random walk. István Berkes and Lajos Horváth [21]
extend the results of CsH [132] to a larger class of independent sequences. For an insightful
comprehensive review of results and problems related to pointwise central limit theorems we
refer to Berkes [20] in [V1].

Pre-super Brownian motion. Super Brownian motion can be defined as a high-density
limit of critically branching Brownian motions. The paper CsR [180] uses the term pre-super
Brownian motion to refer to the branching particle system before the limiting process. First,
a sequence of results is proved on binary branching Brownian motion, where the branching is
controlled by a sequence of i.i.d. uniform–(0, 1) random variables. Namely, a new particle born

at time t is replaced by 2 independent particles at time t + (1 − t)U , where U
D
== uniform −

(0, 1). John Verzani notes in his review MR 2002f:60163 that this process, sometimes called
a “stick-braking process”, has been used in connection with the superprocess previously (cf.
A.M. Etheridge [118, Section 3.4], and references therein). In [180], the thus obtained results
are related to the pre-super Brownian motion and its limit.
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Local times in a random environment. We are now to have a look at local times in a
random environment. As to the random environment, let E = {Ei, i ∈ ZZ} be a sequence of
i.i.d. random variables with distribution function F (x) = P (E0 ≤ x), 0 < x < 1, F (0) = 0,
F (1) = 1. Any realization of this random environment E will be denoted by the same letter.
For any fixed sample sequence of this environment, define a random walk {Sn} by S0 = 0 and
P E {Sn+1 = i + 1|Sn = i} = 1 − P E {Sn+1 = i − 1|Sn = i} = Ei, n = 0, 1, . . . , i = 0,±1, . . ..
This sequence {Sn} is called a random walk in random environment (RWIRE) and, initiated by
F. Solomon [268], it has been widely studied under the following conditions with respect to the
distribution P of E0:

There is an 0 < a < 1/2 such that P{a < E0 < 1− a} = 1, (3.40)

E log
E0

1 − E0
= 0, (3.41)

0 < σ2 := E log2
E0

1 − E0
<∞. (3.42)

These conditions guarantee the recurrence of {Sn}.
F. Solomon [268] proved that under these conditions

P{P E (Sn = 0 i.o. ) = 1} = 1, (3.43)

i.e., for almost all realizations of the random environment, the particle returns to the origin
infinitely often with probability one.

The celebrated limit theorem of Ya. G. Sinăı [265] in the recurrent case under the conditions
(3.41), (3.42) concludes that for each realization of the random environment E there exists a
function sn such that, as n → ∞, (log n)−2(Sn − sn) converges in probability to 0, and that
(log n)−2σ2sn converges in distribution to a random variable L which is a functional of a Wiener
process. H. Kesten [168] succeeds in computing the distribution of L exactly via showing that
L has an explicitly given density.

Thus, unlike in the classical case, for large n, a random walk in random environment behaves
like (log n)2. In fact, the same holds true forM(n) := max0≤k≤n |Sk| as well. Indeed, it is shown
in P. Deheuvels and P. Révész [97] that, on assuming the conditions (3.41), (3.42), one has for
any ǫ > 0

(log n)2(log logn)−2−ǫ ≤M(n) ≤ (log n)2(log log n)2+ǫ, (3.44)

provided that n ≥ n0, where PE {n0 <∞} = 1 a.s.
Let the local time of a RWIRE {Sk} up to n be ξ(x, n) = #{k : 0 ≤ k ≤ n, Sk = x}. Since in

the classical case M(n) is “around” n1/2, it is not surprising that, asymptotically in n, ξ(x, n)
as in (2.78) is also like n1/2 (cf. K.L. Chung and G.A. Hunt [57], E. Csáki and P. Révész [73],
and G. Simons [264]). In the random environment case the local time fluctuation is much bigger.
For example, on assuming the conditions (3.40)–(3.42), one has (cf. P. Deheuvels and P Révész
[97], and P. Révész [240]) for any fixed integer k and ε > 0,

PE

{

ξ(k, n) ≤ exp

(

log n

(log log n)1−ǫ

)

i.o.

}

= 1 a.s., (3.45)

and

ξ(k, n) ≥ exp

(

logn

(log log n)1+ǫ

)

, (3.46)
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provided n ≥ n0, where PE {n0 <∞} = 1 a.s.
In the light of this big fluctuation via large n, it is natural to expect that the local time

ξ(k, n) in k is also much less stable in the case of RWIRE than in the classical situation. For
the sake of describing stability, just like in the classical case, consider the ratio

ν(k, n) :=
ξ(k, n)

ξ(0, n)
. (3.47)

In the classical case, i.e., when ξ(·, ·) is as defined as in (2.78), one has (cf. CsR [69], and
E. Csáki and A. Földes [68]) for any ǫ > 0

lim
n→∞

sup
|k|≤n1/2/(logn)1+ǫ

|ν(k, n) − 1| = 0 a.s. (3.48)

and
lim
n→∞

sup
|k|≤n1/2/ logn

|ν(k, n)− 1| ≥ 1 a.s. (3.49)

Intuitively it is clear that for RWIRE one cannot expect that ν(k, n) would converge to 1
even for a fixed k. In paper [95] with P. Révész and L. Horváth it is shown however that there
exists a random function m(k, E) = mk which depends only on the environment E , i.e., m(k, ·)
is a deterministic function for any realization of the environment E , such that ν(k, n) is near
mk in the recurrent case. Namely, on assuming the conditions (3.41) and (3.42), one has for any
ǫ > 0 and k a fixed integer

P E

{

lim
n→∞

exp ((log n)(log log n)−(1+ǫ))|ν(k, n) −mk| = 0
}

= 1 a.s. (3.50)

The result in (3.44) indicates that in the statement of (3.50) one cannot expect uniformity in
k when k is very close to (log n)2. Indeed, as an analogue of (3.48) and (3.49) combined, paper
[95] also concludes that, on assuming (3.41), (3.42) together with

F (x) + 1 − F (1 − x) = O(xα) with some positive α as x→ ∞, (3.51)

then, for each ǫ, δ > 0,

PE

{

lim
n→∞

exp ((logn)(log log n)−(1+δ))

× max
1≤k≤(logn)2/(log logn)2+ǫ

|ν(k, n)−mk| = 0
}

= 1 a.s., (3.52)

and for each C > 1/(2σ2) with some ǫ = ǫ(C) > 0

P E

{

lim sup
n→∞

n−ǫ max
1≤k≤C(logn)2/ log logn

|ν(k, n)−mk| = ∞
}

= 1 a.s. (3.53)

The fluctuation of mk and, via (3.52) also that of ν(k, n), is very big. As to the question
of how big, paper [95] concludes that, under the conditions (3.41), (3.42) and (3.51), with a
sequence of positive integers {kn} such that, as n→ ∞,

(log log n)2+ǫ

(log n)2
kn → 0 for some ǫ > 0 and kn → ∞, (3.54)
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one has, for any x > 0,

lim
n→∞

P
{

(ν(kn, n))
k
−1/2
n ≤ x

}

= Φ
( 1

σ
log x

)

, (3.55)

where Φ is the standard normal distribution function. Moreover, if in addition to (3.41), (3.42),
(3.51) and (3.54),one also assumes that kn+1/kn is bounded, then the LIL that corresponds to
(3.55) reads as follows

PE

{

lim sup
n→∞

(ν(kn, n))
(2kn log log kn)−1/2

= eσ
}

= 1 a.s., (3.56)

PE

{

lim inf
n→∞

(ν(kn, n))
(2kn log log kn)−1/2

= e−σ
}

= 1 a.s. (3.57)

For many more results and much more insight into RWIRE and related matters, we refer
to Part III of Révész [242]. Especially for studying the RWIRE local time ξ(0, n) and the
favourite value of the RWIRE, we refer to paper [241], and, respectively, to Chapters 28 and
29 of [242]. In particular, we wish to call attention to the beautiful main result of [241] (cf.
also Theorem 29.1 of Chapter 29 of [242]) which, for the maximum local time of a RWIRE,
ξ(n) := maxk ξ(k, n), that is based on the specific random environment E = {Ei, i ∈ ZZ} with
distribution P (E0 = p) = P (E0 = 1 − p) = 1/2, 0 < p < 1/2, concludes that there exists a
constant g = g(p) > 0 such that lim supn→∞ n

−1ξ(n) ≥ g(p) a.s. for almost all realizations of
this random environment, i.e., P{PE ( lim supn→∞ n

−1ξ(n) ≥ g(p)) = 1} = 1. In his Remark
1 on page 298 of [242] Révész notes that, very likely, the latter conclusion remains true under
the usual conditions (3.40)–(3.42) as well. These conditions are of course implied by the just
mentioned specific random environment assumptions. So, in random environment the local time
can indeed be very big.

Brownian local time distributions, moduli of continuity for local times of Gaus-
sian processes. Further to local times, let {W (t); t ≥ 0} be a standard Wiener process and let
{L(x, t); x ∈ IR1, t ≥ 0} be its local time as in (2.79). Paper [140] with Qi-Man Shao provides
a new proof for the distribution of L(x, t + h) − L(x, t) for each x ∈ IR1, t ≥ 0, h > 0. Using
the Fourier analytic approach to the local time, due to Berman [24], [26], the proof involves the
explicit computation of the mth moment of the latter random variable. In particular, the result

itself, for example yields L(0, t)
D
= sup0≤s≤tW (s) (cf. P. Lévy [186]), as well as (cf. P. Lévy [187])

P{L(0, t+ h)− L(0, t) = 0} =
2

π
tan−1(

√

t/h). (3.58)

Let {X(t); t ≥ 0} be a real-valued stochastic process with occupation time

H(A, t) = λ{s : 0 ≤ s ≤ t, X(s) ∈ A}, t ≥ 0, (3.59)

for any Borel set A of the real line, where λ is the Lebesgue measure. If, for each fixed t, H(·, t)
is absolutely continuous with respect to Lebesgue measure, then its Radon-Nikodym derivative
is called the local time (occupation density) of X(·) at t, denoted by ℓ(·, t). Then, à la (2.79),
H(A, t) =

∫

A ℓ(x, t)dx. In [151] with Zheng-Yan Lin and Qi-Man Shao the authors study the
sample path properties of increments in t of the local times ℓ(x, t) of Gaussian processes with
stationary increments and those of stationary Gaussian processes as well, both for fixed x and for
all x. These investigations are guided by some well known fine analytic properties of the moduli
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in t of the local time L(x, t) of a standard Wiener process (cf. J. Hawkes [145], E. Perkins [213],
Csáki et al. [58], H. Kesten [167], Csáki et al. [69, Theorem 2.1] in [V2]). The main condition
employed in the paper was first introduced in local time theory for Gaussian processes by Simeon
M. Berman [25]. The condition is that the incremental variance function σ2(·) is continuous
and concave on some interval [0, T ], T > 0. This condition facilitates the computation of the
determinant of the covariance matrix of the finite-dimensional distribution of the process that
arises in the expression for the higher moments of ℓ(·, ·) (cf. Lemma 3.5 of [151]). An example
of one of the several conclusions reads as follows (cf. Corollary 2.2 to Theorem 2.1 of [151]): Let
{X(t), t ≥ 0} be a fractional Wiener process of order α, 0 < α ≤ 1/2, i.e., a centered Gaussian
process with stationary increments and σ2(h) = E(X(t+ h) −X(t))2 = h2α, t, h ≥ 0. Then

lim sup
h↓0

ℓ(0, h)

h1−α(log log(1/h))α
≤ 200 a.s. (3.60)

In case of a standard Wiener process W (·) with local time L(·, ·), (3.60) with α = 1/2 reads

lim sup
h↓0

L(0, h)

(h log log(1/h))1/2
≤ 200 a.s. (3.61)

The local version of Kesten’s LIL [167] yields

lim sup
h↓0

L(0, h)

(2h log log(1/h))1/2
= 1 a.s.

Consequently, the bound one gets in (3.61) from (3.60) via Theorem 2.1 of [151] that deals with
mean zero Gaussian processes of stationary increments in general, is of the precise order.

Infinite dimensional Ornstein–Uhlenbeck processes, Banach space valued pro-
cesses: the limit superior behaviour of their path increments. Let

{Y (t), t ∈ IR1} = {Xk(t), t ∈ IR1, k = 1, 2, . . .} (3.62)

be a sequence of independent Ornstein–Uhlenbeck processes with coefficients γk and λk, i.e.,
Xk(·) is a stationary mean zero Gaussian process with covariance function

EXk(s)Sk(t) = (γk/λk) exp(−λk|t− s|), (γk, λk > 0, k = 1, 2, ). (3.63)

The process Y (·) was first studied by Don Dawson [87] as the stationary solution of the infinite
array of stochastic differential equations

dXk(t) = −λkXk(t)dt+ (2γk)
1/2dWk(t), k = 1, 2, . . . , (3.64)

where {Wk(t), t ∈ IR1} are independent Wiener processes (cf. also D.A. Dawson [88], J.B. Walsh
[294], A. Antoniadis and R. Carmona [13]). The continuity properties of Y (·) were investigated
by D.A. Dawson [87], I. Iscoe and D. McDonald [153], [154], B. Schmuland [250], [251], [252], and
Iscoe et al. [155]. The final result in this regard is due to X. Fernique [124]. Moduli of continuity
for Y (·) were first studied by B. Schmuland [251] and in the paper [103] with Z.Y. Lin. Further
along these lines, path properties of Y (·) were studied in [102], [114], [115] with Zhengyan Lin,
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X. Fernique [124], [125], [126], I. Iscoe et al. [155], B. Schmuland [253], [254], Csáki et al. [125].
For example with Xk(·) as in (3.62)–(3.63), in [115] the authors study the real valued processes

X(t) :=

∞
∑

k=1

Xk(t) and χ2(t) :=

∞
∑

k=1

X2
k(t), t ∈ IR1, (3.65)

along the lines of CsR [43] and Chapter 1 of CsR [A1]. On the other hand, Csáki et al. [125]
first establish moduli of continuity and large increment properties for more general mean zero
stationary increment Gaussian processes in order to study the path behaviour of X(·) as in
(3.65). The existence and continuity of such infinite series type Gaussian processes are proved
via showing that under a global condition their corresponding partial sums processes

{X(t, n) :=
n
∑

k=1

Xk(t), t ∈ IR1, n = 1, 2, . . .} (3.66)

converge uniformly over finite intervals with probability one. In [114] the authors study Y (·)
of (3.62) in terms of the two-time parameter stochastic process X(·, ·) as in (3.66) and in that
of its version when both time parameters are continuous (cf. (3.79)). The methods used and
the results obtained in this regard are similar to those used in Chapter 1 of CsR [A1] when
studying the Wiener sheet. We also note in passing that in the papers [115] and [125] there is
an exhaustive description of related results available.

The papers [119], [122], [130], [133] initiate and extend investigations on moduli of conti-
nuity and large increments to Banach space valued processes, with special attention to ℓ2– and
ℓp–valued processes. Adapting to style of referencing as in our present presentation, we quote
from [130] with Endre Csáki:

The essence of our approach is the realization that the inequalities of Lemmas 1.1.1
and 1.2.1 for increments of a standard Brownian motion in Csörgő and Révész [A1]
[cf. also Lemmas 1 and 1∗ of Csörgő and Révész [43]] can be extended to increments
of general, nonstationary, not necessarily Gaussian, Banach space valued processes,
def ined on the real line.

With reference to [130], and [133] with Q.-M. Shao, this generality is achieved by first as-
suming specific conditions on the tail behaviour of the increments of {Γ(t), t ∈ IR1}, a stochastic
process with values in a separable Banach space B with norm || · || that is assumed to be almost
surely continuous with respect to the latter norm. Based on such tail conditions, large deviation
results are proved for increments like sup0≤t≤T−a sup0≤s≤a ||Γ(t+ s)−Γ(T )|| (cf., e.g., Theorem
5.1 in Csáki et al. [69] in [V2]), which then are used to establish moduli of continuity and large
increment estimates for Γ(·) (cf., e.g., Theorem 5.2 in Csáki et al. [69] in [V2]). One of the
many applications is to prove moduli of continuity estimates for ℓ2–valued and ℓ2–norm squared
Ornstein-Uhlenbeck processes, as in [130] and [133] for example. One of the motivations for
studying the ℓ2–norm squared real valued process χ2(·) as in (3.65) is due to the observation
that Y (·) of (3.62)–(3.63) in ℓ2 is almost surely continuous if and only if χ2(·) ∈ IR1 is almost
surely continuous (cf., e.g., Lemma 5.1 of [130]). Paper [150] follows the general pattern of
[130] and [133] in studying ℓp–valued Gaussian processes for 1 ≤ p ≤ 2. While for any given
process the assumed tail conditions may not always be easy to check, the idea is to separate
out the two parts of the standard proofs of stochastic moduli results: (i) the tail behaviour and
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large deviations of increments, and (ii) their applications to get the moduli results. The setup is
general, and there is no need for Gaussian, or Gaussian related, restrictions. For related results
on ℓp–valued Ornstein-Uhlenbeck processes, with p ≥ 1, we refer to Fernique [125], [126], and
with 1 ≤ p ≤ 2, to Schmuland [254] and [119] with Csáki.

The moduli of continuity studies of [133] on the real valued ℓ2–norm squared process χ2(t) as
in (3.65) are revisited in [136], where the authors establish exact randomized moduli of continuity
for the latter process. For example, it is shown that under suitable conditions on the γk and λk
in (3.63), one has

lim
h↓0

sup
0≤t≤1

sup
0≤s≤h

|χ2(t+ s)− χ2(t)|
Γ(t, h)(2 log 1

h)
1/2

= 1 a.s. (3.67)

and, for each t,

lim sup
h↓0

sup
0≤s≤h

|χ2(t+ s)− χ2(t)|
Γ(t, h)(2 log log 1

h)
1/2

= 1 a.s., (3.68)

where Γ2(t, h) := 4
∑∞

k=1
γk
λk

(1 − e−2λkh)X2
k(t), t, h ≥ 0.

It is inviting to compare the randomized moduli of continuity results in (3.67) and (3.68)
with P. Lévy’s moduli for Brownian motion (cf., e.g., Theorems 1.1.1, 1.3.3 and 1.3.3∗ in CsR
[A1], and Section 5 of Khoshnevisan [171] in [V2] for recent developments along these P. Lévy
moduli lines). These results also have the characteristics of the strong increment theorems for
self-normalized partial sums (cf. Csörgő et al. [192, Section 6] in [V2]).

Paper [138] with Qi-Man Shao starts with combining Lemma 2.1 and Theorem 3.1 of Csáki
et al. [133] (cf. Theorems 5.1 and 5.2 respectively, in Csáki et al. [69] in [V2]) as Theorem A
for use as a general estimate for studying increments of Banach space valued processes. As
summarized just above when viewing papers [130], [133] and [150] together, the novelty and
usefulness of this combination of Lemma 2.1 and Theorem 3.1 of [133] alone yielded significant
new results when studying various path properties of ℓp–valued, 1 ≤ p ≤ 2, Gaussian processes
in Csáki et al. [133] and [150]. In [138] with Qi-Man Shao Theorem A is combined with the
well-known Borell inequality as given in Robert J. Adler [1], via the dual-space idea as used
in Michael B. Markus and Jay Rosen [194], and thus it succeeds in refining the earlier results
of Csáki et al. [133], [150], as well as in extending them to ℓp-valued, 1 ≤ p < ∞, Gaussian
processes with stationary increments. The use of this approach is demonstrated in proving
LIL results for ℓp-valued 1 ≤ p < ∞ Gaussian processes, as well as for studying fine sample
path properties of ℓp-valued, 1 ≤ p < ∞, fractional Wiener and fractional Ornstein-Uhlenbeck
processes (cf. Sections 5 and 6 respectively, of [138]). Robert J. Adler in his MR 95k: 60084
writes: “The proofs hinge on delicate inequalities for Gaussian, Banach space valued processes,
as well as the usual tools of the Gaussian theory, including Borell’s inequality.” A particular
case of (5.7) of Theorem 5.1, that may be of independent interest, illustrates the powerful and
far reaching nature of the results of [138]: Let W(t) = (W1(t), . . . ,Wd(t)), t ≥ 0, be a standard
d–dimensional Wiener process. Then

lim sup
T→∞

(
∑d

i=1 |Wi(t)|p
)1/p

(2T log logT )1/2
= d(2−p)/2p a.s., if 1 ≤ p < 2, (3.69)

and

lim sup
T→∞

(
∑d

i=1 |Wi(t)|p
)1/p

(2T log logT )1/2
= 1 a.s., if p ≥ 2. (3.70)
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Csörgő et al. [145] establish moduli of continuity results for ℓ∞ valued continuous Gaussian
processes with stationary increments in general, as well as for ℓ∞ valued Ornstein-Uhlenbeck
processes in particular, namely, in both cases, the size of increments of the type supk≥1 |Xk(t+
s) −Xk(t)| are analyzed uniformly in t ∈ [0, 1] and s ∈ [0, h] as h ↓ 0.

For recent developments and further references that are related to our discussion starting
with the papers [119], [122], [130], [133] above, we refer to Yong-Kab Choi [53].

Limit inferior behaviour of inf-sup increments of Banach space valued stochastic
processes. Paper [144] with Qi-Man Shao establishes a criterion for the limit inferior behaviour
of inf0≤t≤bT sup0≤s≤aT ‖Γ(t+ s)−Γ(t)‖, where {Γ(t), t ∈ IR1} is a stochastic process with values
in a separable Banach space B with norm ‖ · ‖. The idea of the latter criterion in [144] is similar
to that of the above discussed Theorem A in [138] (cf. Theorems 5.1 and 5.2 combined in Csáki
et al. [69] in [V2]), whose usefulness was demonstrated in [133], [150] and [138] for studying
path properties of large and small increments of ℓp–valued, 1 ≤ p <∞, Gaussian processes. The
similar criterion of [144] for the limit inferior behaviour of inf0≤t≤bT sup0≤s≤aT ‖Γ(t+ s)−Γ(t)‖
is related to the notion of non-differentiability of Γ(·), and it reads as follows (cf. Theorem 2.1
of [144]): Let aT , bT be nonnegative continuous functions, and v(t) be a nonnegative monotone
nondecreasing function. Assume that there exist positive constants c and d such that for each
t > 0

1 + bT
aT

+ aT → ∞ as T → ∞, (3.71)

P

{

sup
0≤s≤

aT
2

‖Γ(t+ s)− Γ(t)‖ ≤ v(x)
}

≤ c exp(−daT/x) (3.72)

for each t ∈ [0, 2bT ] and

daT
4(log(bT/aT ) + log logãT

≤ x ≤ 4daT
log(bT/aT ) + log logãT

,

where ãT = aT + 1/aT . Then

lim inf
T→∞

inf
0≤t≤bT

sup
0≤s≤aT

‖Γ(t+ s) − Γ(t)‖
v(daT/2(log(bT/aT ) + log logãT ))

≥ 1

2
a.s. (3.73)

Clearly, if aT → 0 or aT → ∞, or bT → ∞ as T → ∞, then (3.71) is satisfied. Consequently,
(3.71) includes the usual large and small increments as special cases.

The following example shows the generality of the above theorem. It is well known that for
a standard Wiener process {W (t), t ≥ 0} one has (cf., e.g., (5.9) of Chapter X of Feller [121],
or (2.5) in [9])

P

{

sup
0≤s≤aT /2

|W (t+ s)−W (t)| ≤ x1/2
}

≤ 2 exp
(

− π2aT
16x

)

(3.74)

for any t ≥ 0, aT > 0, 0 < x ≤ aT . Therefore, by (3.73)

lim inf
T→∞

inf
0≤t≤bT

sup
0≤s≤aT

|W (t+ s)−W (t)|
(π2aT/32(log(bT/aT ) + log logãT ))1/2

≥ 1

2
a.s. (3.75)

provided that (3.71) is satisfied. Such examples are, for example, provided by taking (bT =
0, aT = 1/T ), (bT = 1, aT = 1/T ), (bT = 0, aT = T ), (bT = T ), (bT = T, aT = 1). For details
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we refer to page 32 of [144]. We note that in all of the above results, the thus obtained lim
inf rates, up to a constant, are sharp (cf. CsR [A1, Chapter 1)]. For example, in the case of
(bT = 1, aT = 1

T =: h), we get

lim inf
h↓0

inf
0≤t≤1

sup
0≤s≤h

4

√

8 log(1/h)

π2h
|W (t+ s)−W (t)| ≥ 1 a.s., (3.76)

whose rate, in view of (2.75), is seen to be sharp.
Specific applications of the above quoted Theorem 2.1 of [144] include the case of Γ(·) being

a Banach space valued stochastic process with independent increments, which in turn leads to
studying Γ(·) being a real valued stable process with index α > 1, or a symmetric stable process
with index 0 < α ≤ 1. As another application of Theorem 2.1, the limit inferior problem is
studied in general for real valued Gaussian processes with mean zero and stationary increments.
Moreover, it is shown in particular, that the thus obtained lower bound is best possible for X(t)
of (3.65). As a consequence, it is also concluded that, under suitable conditions, almost all
sample functions of the process X(·) of (3.65) are nowhere differentiable. Finally we note that
almost all the known limit superior results on X(·), or ℓp–valued Gaussian processes (cf. [130],
[133], [138], [150]) parallel the corresponding ones for the standard Wiener process (cf., e.g.,
Chapter 1 of CsR [A1]). On the other hand, the results of [144] show that the situation is quite
different for the limit inferior behaviour of these processes. It appears that the limit inferior
behaviour of such processes is more sensitive to their deviations from a standard Wiener process
than their limit superior behaviour.

Path properties of kernel generated two-time parameter Gaussian processes. As
already noted above, studying path properties of the two-time parameter Gaussian process
X(t, n) of (3.66) were initiated in [114] with Lin (cf. also Csáki et al. [125]). Integrating the
equations in (3.64) from −∞ to t, one obtains

Xk(t) =

∫ t

−∞
exp(−λk|t− s|)(2γk)1/2dWk(s), k = 1, 2, . . . , (3.77)

and hence also

X(t, n) =

n
∑

k=1

Xk(t) =

n
∑

k=1

∫ t

−∞
exp(−λk|t− s|)(2γk)1/2dWk(s). (3.78)

The latter, in turn, has in [114] led to studying also the two-time parameter Gaussian process

X(t, v) :=

∫ v

0

∫ t

0
exp(−λ(y)(t− x))(2γ(y))1/2dW (x, y), (3.79)

where γ(y), λ(y) are assumed to be positive continuous functions on [0,∞), and {W (x, y), x ∈
IR1, y ∈ IR1

+} is a standard Wiener sheet (cf., e.g., Sections 1.10–1.15 and the Supplementary
remarks of Chapter 1 of CsR [A1]).

In view of (3.79), the papers [124] and [139] respectively with Lin, and Lin and Shao, study
two-time parameter Gaussian processes {X(t, v), t ∈ IR1, v ∈ IR1

+} of the form

X(t, v) :=

∫ ∞

0

∫ ∞

−∞
Γ(t, v, x, y)dW (x, y), (3.80)
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where the kernel function Γ(t, v, x, y) is assumed to be square integrable in (x, y). Thus X(t, v)
is a Gaussian process with mean zero and covariance function

Cov(X(t, v)X(s, u)) =

∫ ∞

0

∫ ∞

−∞
Γ(t, v, x, y)Γ(s, u, x, y)dxdy. (3.81)

No stationarity properties are assumed for X(t, v), and it can be assumed to be separable.
Varying the kernel Γ, special cases of this process include the Wiener sheet X(t, v) = W (t, v),
the Kiefer process X(t, v) =W (t, v)−tW (1, v), and processes related to the infinite-dimensional,
ℓ2–valued Ornstein-Uhlenbeck process (cf. Examples 1–5 of [139]). Paper [139] improves the
results of [124] to a great extent. In particular, the large deviation results of [139] are much
sharper than those of [124], and are more like those of Fernique (cf., e.g., [122], [123], [124]
and [125]). However, in [139] there is more attention being paid to details in the case of non-
stationary Gaussian processes, especially when they are kernel generated as in (3.80). The hinted
at large deviation results are used to establish fine path properties of theX(·, ·) process in general
(cf. Theorems 1.1–1.9 of [139]) and those of the five examples of the paper in particular (cf.
Corollaries 1.1–1.9 of [139]). First four of the just mentioned corollaries deal with the two-time
parameter Wiener and Kiefer processes. The latter results are similar to those of Chapter 1
of CsR [A1] for the same processes. For further references and results on the Wiener sheet we
refer to Khoshnevisan [171] in [V2]. The conclusions of Corollaries 1.5–1.9 were brand new at
that time. Corollary 1.7 is related to some results of Walsh [294]. The discursive introduction
of paper [139] is recommended as a particularly interesting reading on the history behind the
problems in hand. For an extensive review and further references on path properties of Gaussian
and related processes we refer to the research monographs [188], [189].

On the topics of some of the papers that are discussed in Csáki et al. [69] in [V2].
For an authoritative study of the contributions of the papers [58], [108], [134], [152], plus some
more, on Brownian local time and additive functionals we refer to Sections 2.1–2.3 of Csáki et
al. [69], for that of the papers [178], [182], [187] on principal value of Brownian local time to
Section 2.4 of [69], and for that of [176] on integral functionals of geometric stochastic processes
to Section 2.5 of [69] in [V2]. Section 3.1 of the same paper deals with iterated processes in view
of parts of [108] and Burdzy [39] (cf. (2.8) and (3.2) respectively, in Csáki et al. [69]) via the
global Strassen-type functional LIL laws of [153]. The papers [156], [164] study local time and
occupation time properties of iterated Brownian motion. For details in this regard we refer to
Section 3.2 of Csáki et al. [69]. Paper [170] with Zhan Shi and Marc Yor establishes Strassen-
type functional LIL joint laws for the normalized level crossings at zero and the maximal level
crossings of the uniform empirical process αn (cf. (3.12)), and studies LIL and other LIL–type
laws for the local time of αn under L

p–norm as well (cf. Theorems 4.1–4.3 in Csáki et al. [69] in
[V2]).

Strong limit theorems and invariance principles for self-normalized and Studen-
tized partial sums processes in the domain of attraction of the normal law. The
papers Csörgő et al. [74], [75] prompted [97] with Horváth, and [76] by S. Csörgő on self-
normalized sums from the domain of attraction of a stable law. The Griffin and Kuelbs [135],
[136] papers inspired the contributions Csörgő, Lin and Shao [141], and Csörgő and Shao [143]
on Studentized increments of partial sums, and self-normalized Erdős–Rényi type strong laws,
respectively, in view of CsR [44] and CsR [A1, Chapter 3]. The results of Darling and Erdős
[85], Einmahl [113], Einmahl and Mason [114] prompted the Csörgő, Szyszkowicz and Wang

55



[190] exposition on establishing a Darling–Erdős theorem for self-normalized partial sums pro-
cesses (cf. also Q. Wang [295] in [V2]). The Gine, Götze and Mason [130] characterization of
the asymptotic normality of the Student t–statistic in the domain of attraction of the normal
law [DAN] inspired the two expositions [191] and [197] by Csörgő, Szyszkowicz and Wang on
Donsker’s theorem and weighted approximations for self-normalized and Studentized partial sums
processes in DAN. Paper [192] by the same three authors in [V2] revisits all these topics on
self-normalized and Studentized partial sums processes. In the case of Donsker’s theorem and
weighted approximations for such partial sums in DAN, the relationship of these results to their
scalar normalized sums companion duals in DAN is also explored (cf. Sections 2 and 3 of [192]
in [V2]).

On reading paper [192], Yuliya Martsynyuk has called our attention to a number of sig-
nificant developments concerning the domain of attraction of the multivariate normal law, the
so-called generalized domain of attraction of the normal law, denoted here by GDAN, in view
of the use of DAN in [192]. We conclude our discussion with recording some of her findings
here in this regard with our many thanks to her. To begin with, the fundamental paper [139] by
M.G. Hahn and M.J. Klass has played a seminal role in initiating an intensive study of GDAN
by many authors. Considering stable distributions in IR2 via using componentwise norming,
S. Resnick and P. Greenwood [231] establish an auxiliary result that is equivalent to the equiv-
alence of (a) and (c) in Proposition 2.1 of [192] in [V2], which is a scalar normalized sums
companion to Theorem 2.3 in the same paper. Prolific Studentization ideas are demonstrated
via GDAN in R.A. Maller [193] and H.T.V. Vu et al. [293], where one can, in particular, find
genuinely multivariate companions to the first conclusion of Theorem 2.6 in [192] that (a) im-
plies (b). As to multivariate companions to the respective conclusions in both Proposition 2.1
and Theorem 2.6 of [192] that (a) implies (c), we refer to S.J. Sepanski [255]. We note in pass-
ing that, as far as we know, there is no converse yet to the multivariate version of (a) implies
(b) in Theorem 2.3 of [192]. Hence the aforementioned results in [193], [293] and [255] are all
one-sided, as opposed to the equivalences in paper [192] in [V2] on account of Giné et al. [130].

Lajos Hor vát h

Bar bar a Sz ysz k ow ic z

56



Refer ences

[1] R. Adler. An Introduction to Continuity, Extrema and Related Topics for General Gaussian
Processes. IMS Lecture Notes–Monograph Series, Vol.12, 1990.

[2] D.J. Aldous. Subsequences of sequences of random variables, Smith’s prize essay, Univ. of
Cambridge, 1976.

[3] D.J. Aldous. Subsequences of sequences of random variables. Bull. Amer. Math. Soc. 83,
121–123, 1977.

[4] D.J. Aldous. Limit theorems for subsequences of arbitrarily-dependent sequences of ran-
dom variables. Z. Wahrsch. verw. Gebiete. 40: 59–82, 1977.

[5] D.J. Aldous. Weak convergence of randomly indexed sequences of random variables.Math.
Proc. Camb. Phil. Soc. 83: 117–126, 1978.

[6] D.J. Aldous, G.K. Eagleson. On mixing and stability of limit theorems. Ann. Probab. 6:
325–331, 1978.

[7] G. Alexits. Convergence Problems of Orthogonal Series. Akadémiai Kiadó, Budapest, 1961.
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(P. Révész, ed.). Veszprém, 1982. North Holland, Amsterdam, 77–89, 1984.

[19] E. Berger. Fastsichere Approximation von Partialsummen unabhängiger und stationärer
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eds.) 33: 67–87, Birkhäuser, Boston, MA, 1993.

[40] M.D. Burke. Weak and Strong Approximations of the Quantile and Multivariate Empirical
Processes when Parameters are Estimated and some Distribution Free k–Sample Tests.
Doctoral dissertation, Carleton University, Ottawa, 1976.
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[63] E. Csáki. Investigations concerning the Empirical Distribution Function. Selected Trans-
lations Math. Statist. Probab. 15: 220–317, 1981.
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[113] U. Einmahl. The Darling-Erdős theorem for sums of i.i.d. random variables. Probability
Theory and Related Fields 82: 241–257, 1989.
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[186] P. Lévy. Sur certains processus stochastiques homogènes. Compositio Math. 7: 283–339,
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